Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802665

ABSTRACT

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Subject(s)
Signal Transduction , Ubiquitin-Specific Proteases , Gene Expression Regulation , Endopeptidases
2.
Mol Cancer Ther ; 21(12): 1765-1776, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36129801

ABSTRACT

Binding of steroid hormones to their cognate receptors regulates the growth of most prostate and breast cancers. We hypothesized that CYP11A inhibition might halt the synthesis of all steroid hormones, because CYP11A is the only enzyme that catalyses the first step of steroid hormone biosynthesis. We speculated that a CYP11A inhibitor could be administered safely provided that the steroids essential for life are replaced. Virtual screening and systematic structure-activity relationship optimization were used to develop ODM-208, the first-in-class, selective, nonsteroidal, oral CYP11A1 inhibitor. Safety of ODM-208 was assessed in rats and Beagle dogs, and efficacy in a VCaP castration-resistant prostate cancer (CRPC) xenograft mouse model, in mice and dogs, and in six patients with metastatic CRPC. Blood steroid hormone concentrations were measured using liquid chromatography-mass spectrometry. ODM-208 binds to CYP11A1 and inhibited its enzymatic activity. ODM-208 administration led to rapid, complete, durable, and reversible inhibition of the steroid hormone biosynthesis in an adrenocortical carcinoma cell model in vitro, in adult noncastrated male mice and dogs, and in patients with CRPC. All measured serum steroid hormone concentrations reached undetectable levels within a few weeks from the start of ODM-208 administration. ODM-208 was well tolerated with steroid hormone replacement. The toxicity findings were considered related to CYP11A1 inhibition and were reversed after stopping of the compound administration. Steroid hormone biosynthesis can be effectively inhibited with a small-molecule inhibitor of CYP11A1. The findings suggest that administration of ODM-208 is feasible with concomitant corticosteroid replacement therapy.


Subject(s)
Adrenal Cortex Neoplasms , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Animals , Mice , Rats , Dogs , Cholesterol Side-Chain Cleavage Enzyme , Prostate , Disease Models, Animal , Hormones
3.
Br J Pharmacol ; 177(24): 5534-5554, 2020 12.
Article in English | MEDLINE | ID: mdl-32959887

ABSTRACT

BACKGROUND AND PURPOSE: The lack of selective sodium-calcium exchanger (NCX) inhibitors has hampered the exploration of physiological and pathophysiological roles of cardiac NCX 1.1. We aimed to discover more potent and selective drug like NCX 1.1 inhibitor. EXPERIMENTAL APPROACH: A flavan series-based pharmacophore model was constructed. Virtual screening helped us identify a novel scaffold for NCX inhibition. A distinctively different NCX 1.1 inhibitor, ORM-11372, was discovered after lead optimization. Its potency against human and rat NCX 1.1 and selectivity against other ion channels was assessed. The cardiovascular effects of ORM-11372 were studied in normal and infarcted rats and rabbits. Human cardiac safety was studied ex vivo using human ventricular trabeculae. KEY RESULTS: ORM-11372 inhibited human NCX 1.1 reverse and forward currents; IC50 values were 5 and 6 nM respectively. ORM-11372 inhibited human cardiac sodium 1.5 (INa ) and hERG KV 11.1 currents (IhERG ) in a concentration-dependent manner; IC50 values were 23.2 and 10.0 µM. ORM-11372 caused no changes in action potential duration; short-term variability and triangulation were observed for concentrations of up to 10 µM. ORM-11372 induced positive inotropic effects of 18 ± 6% and 35 ± 8% in anaesthetized rats with myocardial infarctions and in healthy rabbits respectively; no other haemodynamic effects were observed, except improved relaxation at the lowest dose. CONCLUSION AND IMPLICATIONS: ORM-11372, a unique, novel, and potent inhibitor of human and rat NCX 1.1, is a positive inotropic compound. NCX inhibition can induce clinically relevant improvements in left ventricular contractions without affecting relaxation, heart rate, or BP, without pro-arrhythmic risk.


Subject(s)
Myocytes, Cardiac , Sodium-Calcium Exchanger , Action Potentials , Animals , Calcium/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Rabbits , Rats , Sodium/metabolism
4.
J Steroid Biochem Mol Biol ; 192: 105115, 2019 09.
Article in English | MEDLINE | ID: mdl-29438723

ABSTRACT

We report the discovery of a novel nonsteroidal dual-action compound, ODM-204, that holds promise for treating patients with castration-resistant prostate cancer (CRPC), an advanced form of prostate cancer characterised by high androgen receptor (AR) expression and persistent activation of the AR signaling axis by residual tissue androgens. For ODM-204, has a dual mechanism of action. The compound is anticipated to efficiently dampen androgenic stimuli in the body by inhibiting CYP17A1, the prerequisite enzyme for the formation of dihydrotestosterone (DHT) and testosterone (T), and by blocking AR with high affinity and specificity. In our study, ODM-204 inhibited the proliferation of androgen-dependent VCaP and LNCaP cells in vitro and reduced significantly tumour growth in a murine VCaP xenograft model in vivo. Intriguingly, after a single oral dose of 10-30 mg/kg, ODM-204 dose-dependently inhibited adrenal and testicular steroid production in sexually mature male cynomolgus monkeys. Similar results were obtained in human chorionic gonadotropin-treated male rats. In rats, leuprolide acetate-mediated (LHRH agonist) suppression of the circulating testosterone levels and decrease in weights of androgen-sensitive organs was significantly and dose-dependently potentiated by the co-administration of ODM-204. ODM-204 was well tolerated in both rodents and primates. Based on our data, ODM-204 could provide an effective therapeutic option for men with CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/chemistry , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Haplorhini , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Rats , Rats, Sprague-Dawley , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 18(1): 28-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30301864

ABSTRACT

Alterations in the gene encoding for the FGFR and upregulation of the VEGFR are found often in cancer, which correlate with disease progression and unfavorable survival. In addition, FGFR and VEGFR signaling synergistically promote tumor angiogenesis, and activation of FGFR signaling has been described as functional compensatory angiogenic signal following development of resistance to VEGFR inhibition. Several selective small-molecule FGFR kinase inhibitors are currently in clinical development. ODM-203 is a novel, selective, and equipotent inhibitor of the FGFR and VEGFR families. In this report we show that ODM-203 inhibits FGFR and VEGFR family kinases selectively and with equal potency in the low nanomolar range (IC50 6-35 nmol/L) in biochemical assays. In cellular assays, ODM-203 inhibits VEGFR-induced tube formation (IC50 33 nmol/L) with similar potency as it inhibits proliferation in FGFR-dependent cell lines (IC50 50-150 nmol/L). In vivo, ODM-203 shows strong antitumor activity in both FGFR-dependent xenograft models and in an angiogenic xenograft model at similar well-tolerated doses. In addition, ODM-203 inhibits metastatic tumor growth in a highly angiogenesis-dependent kidney capsule syngenic model. Interestingly, potent antitumor activity in the subcutaneous syngenic model correlated well with immune modulation in the tumor microenvironment as indicated by marked decrease in the expression of immune check points PD-1 and PD-L1 on CD8 T cells and NK cells, and increased activation of CD8 T cells. In summary, ODM-203 shows equipotent activity for both FGFR and VEGFR kinase families and antitumor activity in both FGFR and angigogenesis models.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism , Protein Kinase Inhibitors/administration & dosage , T-Lymphocytes/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Kidney Neoplasms/metabolism , Killer Cells, Natural/metabolism , Mice , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Xenograft Model Antitumor Assays
6.
Medchemcomm ; 8(5): 1037-1045, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30108817

ABSTRACT

The high similarity between certain sub-pockets of serine proteases may lead to low selectivity of protease inhibitors. Therefore the application of proteochemometrics (PCM), which quantifies the relationship between protein/ligand descriptors and affinity for multiple ligands and targets simultaneously, is useful to understand and improve the selectivity profiles of potential inhibitors. In this study, protein field-based PCM that uses knowledge-based and WaterMap derived fields to describe proteins in combination with 2D (RDKit and MOE fingerprints) and 3D (4 point pharmacophoric fingerprints and GRIND) ligand descriptors was used to model the bioactivities of 24 homologous serine proteases and 5863 inhibitors in an integrated fashion. Of the multiple field-based PCM models generated based on different ligand descriptors, RDKit fingerprints showed the best performance in terms of external prediction with Rtest2 of 0.72 and RMSEP of 0.81. Further, visual interpretation of the models highlights sub-pocket specific regions that influence affinity and selectivity of serine protease inhibitors.

7.
Traffic ; 17(2): 131-53, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26572066

ABSTRACT

The Sec1/Munc18 (SM) proteins constitute a conserved family with essential functions in SNARE-mediated membrane fusion. Recently, a new protein-protein interaction site in Sec1p, designated the groove, was proposed. Here, we show that a sec1 groove mutant yeast strain, sec1(w24), displays temperature-sensitive growth and secretion defects. The yeast Sec1p and mammalian Munc18-1 grooves were shown to play an important role in the interaction with the SNAREs Sec9p and SNAP-25b, respectively. Incubation of SNAP-25b with the Munc18-1 groove mutant resulted in a lag in the kinetics of SNARE complex assembly in vitro when compared with wild-type Munc18-1. The SNARE regulator SRO7 was identified as a multicopy suppressor of sec1(w24) groove mutant and an intact Sec1p groove was required for the plasma membrane targeting of Sro7p-SNARE complexes. Simultaneous inactivation of Sec1p groove and SRO7 resulted in reduced levels of exocytic SNARE complexes. Our results identify the groove as a conserved interaction surface in SM proteins. The results indicate that this structural element is important for interactions with Sec9p/SNAP-25 and participates, in concert with Sro7p, in the initial steps of SNARE complex assembly.


Subject(s)
Munc18 Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Membrane Fusion/physiology , Munc18 Proteins/genetics , Mutation/genetics , Protein Binding/physiology , Synaptosomal-Associated Protein 25/genetics , Yeasts/genetics , Yeasts/metabolism
8.
PLoS One ; 10(12): e0144145, 2015.
Article in English | MEDLINE | ID: mdl-26642209

ABSTRACT

AIMS: Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. METHODS AND RESULTS: A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. CONCLUSIONS: The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.


Subject(s)
DNA/metabolism , GATA4 Transcription Factor/metabolism , Heart Defects, Congenital/metabolism , Homeodomain Proteins/metabolism , Models, Biological , Mutation , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Animals , COS Cells , Chlorocebus aethiops , DNA/genetics , GATA4 Transcription Factor/genetics , Heart Defects, Congenital/genetics , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Mice , Protein Binding , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/genetics , Transcription Factors/genetics , Zinc Fingers
9.
Bioorg Med Chem Lett ; 25(22): 5309-14, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26421993

ABSTRACT

Hepsin, a type II transmembrane serine protease, is upregulated in prostate cancer and known to be involved in the progression of metastasis. Here we report a structure-guided approach, which resulted in the discovery of 2-aryl/pyridin-2-yl-1H-indole derivatives as potent and selective inhibitors of hepsin. Potent and selective inhibition of hepsin by compound 8 is likely due to interactions of the amidine group at the S1 site with the cyclohexyl ring from the 2-aryl group projecting towards the S1' site and the tert-hydroxyl group interacting with His57 side-chain as revealed by X-ray crystallography. Compounds 8 and 10, showed Ki of 0.1 µM for hepsin, and exhibited inhibition of invasion and migration of hepsin-overexpressing cell line. Compounds described here could serve as useful tool reagents to investigate the role of hepsin as a potential therapeutic target in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclohexanes/pharmacology , Indoles/pharmacology , Pyridines/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Cyclohexanes/chemical synthesis , Humans , Indoles/chemical synthesis , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Neoplasm Invasiveness , Pyridines/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis
10.
Sci Rep ; 5: 12007, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26137992

ABSTRACT

Activation of androgen receptor (AR) is crucial for prostate cancer growth. Remarkably, also castration-resistant prostate cancer (CRPC) is dependent on functional AR, and several mechanisms have been proposed to explain the addiction. Known causes of CRPC include gene amplification and overexpression as well as point mutations of AR. We report here the pharmacological profile of ODM-201, a novel AR inhibitor that showed significant antitumor activity and a favorable safety profile in phase 1/2 studies in men with CRPC. ODM-201 is a full and high-affinity AR antagonist that, similar to second-generation antiandrogens enzalutamide and ARN-509, inhibits testosterone-induced nuclear translocation of AR. Importantly, ODM-201 also blocks the activity of the tested mutant ARs arising in response to antiandrogen therapies, including the F876L mutation that confers resistance to enzalutamide and ARN-509. In addition, ODM-201 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a castration-resistant VCaP xenograft model. In contrast to other antiandrogens, ODM-201 shows negligible brain penetrance and does not increase serum testosterone levels in mice. In conclusion, ODM-201 is a potent AR inhibitor that overcomes resistance to AR-targeted therapies by antagonizing both overexpressed and mutated ARs. ODM-201 is currently in a phase 3 trial in CRPC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Prostatic Neoplasms/drug therapy , Pyrazoles/pharmacology , Androgens/physiology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Resistance, Neoplasm , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/pathology , Pyrazoles/pharmacokinetics , Receptors, Androgen/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 25(3): 616-20, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25556099

ABSTRACT

Matriptase is a cell-surface trypsin-like serine protease of epithelial origin, which cleaves and activates proteins including hepatocyte growth factor/scatter factor and proteases such as uPA, which are involved in the progression of various cancers. Here we report a fragment-linking approach, which led to the discovery of O-(3-carbamimidoylphenyl)-l-serine amides as potent matriptase inhibitors. The co-crystal structure of one of the potent inhibitors, 6 in complex with matriptase catalytic domain validated the working hypothesis guiding the development of this congeneric series and revealed the structural basis for matriptase inhibition. Replacement of a naphthyl group in 6 with 2,4,6-tri-isopropyl phenyl resulted in 10 with improved matriptase inhibition, which exhibited significant primary tumor growth inhibition in a mouse model of prostate cancer. Compounds such as 10, identified using a fragment-linking approach, can be explored further to understand the role of matriptase as a drug target in cancer and inflammation.


Subject(s)
Amides/chemistry , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Amides/chemical synthesis , Amides/pharmacokinetics , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Half-Life , Kinetics , Male , Mice , Molecular Docking Simulation , Protein Binding , Serine/chemistry , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
12.
Bioorg Med Chem ; 22(12): 3187-203, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24794746

ABSTRACT

Matriptase is a serine protease implicated in cancer invasion and metastasis. Expression of matriptase is frequently dysregulated in human cancers and matriptase has been reported to activate latent growth factors such as hepatocyte growth factor/scatter factor, and proteases such as urokinase plasminogen activator suggesting that matriptase inhibitors could have therapeutic potential in treatment of cancer. Here we report a structure-based approach which led to the discovery of selective and potent matriptase inhibitors with benzene as central core having 1,3,5 tri-substitution pattern. X-ray crystallography of one of the potent analogs in complex with matriptase revealed strong hydrogen bonding and salt-bridge interactions in the S1 pocket, as well as strong CH-π contacts between the P2/P4 cyclohexyl and Trp215 side-chain. An additional interaction of the pendant amine at cyclohexyl with Gln175 side-chain results in substantial improvement in matriptase inhibition and selectivity against other related serine proteases. Compounds 15 and 26 showed tumor growth inhibition in a subcutaneous DU-145 prostate cancer mouse model. These compounds could be useful as tools to further explore the biology of matriptase as a drug target.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Benzene/pharmacology , Cell Proliferation/drug effects , Cyclohexanes/pharmacology , Drug Discovery , Prostatic Neoplasms/pathology , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/pharmacology , Amino Acid Sequence , Animals , Antineoplastic Agents/chemistry , Benzamides/chemistry , Benzene/chemistry , Binding Sites , Crystallography, X-Ray , Cyclohexanes/chemical synthesis , Humans , Male , Mice , Mice, SCID , Models, Molecular , Molecular Sequence Data , Prostatic Neoplasms/drug therapy , Sequence Homology, Amino Acid , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship
13.
Biochem Biophys Res Commun ; 446(3): 675-80, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24326072

ABSTRACT

Oxysterol-binding protein (OSBP) and OSBP-related (ORP) or OSBP-like (OSBPL) proteins constitute a family of lipid-binding/transfer proteins (LTPs) present in eukaryotes from yeast to man. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and act as either lipid transporters or sensors that control lipid metabolism, cell signaling, and vesicle transport. Zebrafish, Danio rerio, has gained increasing popularity as a model organism in developmental biology, human disease, toxicology, and drug discovery. However, LTPs in the fish are thus far unexplored. In this article we report a series of bioinformatic analyses showing that the OSBPL gene family is highly conserved between the fish and human. The OSBPL subfamily structure is markedly similar between the two organisms, and all 12 human genes have orthologs, designated osbpl and located on 11 chromosomes in D. rerio. Interestingly, osbpl2 and osbpl3 are present as two closely related homologs (a and b), due to gene duplication events in the teleost lineage. Moreover, the domain structures of the distinct ORP proteins are almost identical between zebrafish and man, and molecular modeling in the present study suggests that ORD liganding by phosphatidylinositol-4-phosphate (PI4P) is a feature conserved between yeast Osh3p, human ORP3, and zebrafish Osbpl3. The present analysis identifies D. rerio as an attractive model to study the functions of ORPs in vertebrate development and metabolism.


Subject(s)
Carrier Proteins/metabolism , Lipid Metabolism , Receptors, Steroid/metabolism , Zebrafish Proteins/metabolism , Amino Acid Sequence , Animals , Conserved Sequence , Fatty Acid-Binding Proteins , Glycerophospholipids/metabolism , Humans , Phosphatidylinositol Phosphates/metabolism , Protein Conformation , Protein Structure, Tertiary , Zebrafish Proteins/chemistry
14.
J Chem Inf Model ; 53(11): 3021-30, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24116714

ABSTRACT

Achieving selectivity for small organic molecules toward biological targets is a main focus of drug discovery but has been proven difficult, for example, for kinases because of the high similarity of their ATP binding pockets. To support the design of more selective inhibitors with fewer side effects or with altered target profiles for improved efficacy, we developed a method combining ligand- and receptor-based information. Conventional QSAR models enable one to study the interactions of multiple ligands toward a single protein target, but in order to understand the interactions between multiple ligands and multiple proteins, we have used proteochemometrics, a multivariate statistics method that aims to combine and correlate both ligand and protein descriptions with affinity to receptors. The superimposed binding sites of 50 unique kinases were described by molecular interaction fields derived from knowledge-based potentials and Schrödinger's WaterMap software. Eighty ligands were described by Mold(2), Open Babel, and Volsurf descriptors. Partial least-squares regression including cross-terms, which describe the selectivity, was used for model building. This combination of methods allows interpretation and easy visualization of the models within the context of ligand binding pockets, which can be translated readily into the design of novel inhibitors.


Subject(s)
Adenosine Triphosphate/chemistry , Drug Discovery , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Binding Sites , Humans , Least-Squares Analysis , Ligands , Multivariate Analysis , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship
15.
ACS Med Chem Lett ; 4(12): 1152-7, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24900621

ABSTRACT

Matriptase belongs to trypsin-like serine proteases involved in matrix remodeling/degradation, growth regulation, survival, motility, and cell morphogenesis. Herein, we report a structure-based approach, which led to the discovery of sulfonamide and amide derivatives of pyridyl bis(oxy)benzamidine as potent and selective matriptase inhibitors. Co-crystal structures of selected compounds in complex with matriptase supported compound designing. Additionally, WaterMap analyses indicated the possibility of occupying a distinct pocket within the catalytic domain, exploration of which resulted in >100-fold improvement in potency. Co-crystal structure of 10 with matriptase revealed critical interactions leading to potent target inhibition and selectivity against other serine proteases.

16.
Adv Cancer Res ; 111: 97-161, 2011.
Article in English | MEDLINE | ID: mdl-21704831

ABSTRACT

Epithelial architecture is formed in tissues and organs when groups of epithelial cells are organized into polarized structures. The epithelial function and integrity as well as signaling across the epithelial layer is orchestrated by apical junctional complexes (AJCs), which are landmarks for PAR/CRUMBS and lateral SCRIB polarity modules and by dynamic interactions of the cells with underlying basement membrane (BM). These highly organized epithelial architectures are demolished in cancer. In all advanced epithelial cancers, malignant cells have lost polarity and connections to the basement membrane and they have become proliferative, motile, and invasive. Clearly, loss of epithelial integrity associates with tumor progression but does it contribute to tumor development? Evidence from studies in Drosophila and recently also in vertebrate models have suggested that even the oncogene-driven enforced cell proliferation can be conditional, dependant on the influence of cell-cell or cell-microenvironment contacts. Therefore, loss of epithelial integrity may not only be an obligate consequence of unscheduled proliferation of malignant cells but instead, malignant epithelial cells may need to acquire capacity to break free from the constraints of integrity to freely and autonomously proliferate. We discuss how epithelial polarity complexes form and regulate epithelial integrity, highlighting the roles of enzymes Rho GTPases, aPKCs, PI3K, and type II transmembrane serine proteases (TTSPs). We also discuss relevance of these pathways to cancer in light of genetic alterations found in human cancers and review molecular pathways and potential pharmacological strategies to revert or selectively eradicate disorganized tumor epithelium.


Subject(s)
Cell Polarity , Epithelial Cells/pathology , Genes/genetics , Neoplasms/genetics , Neoplasms/pathology , Animals , Humans
17.
J Steroid Biochem Mol Biol ; 123(1-2): 46-57, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21056663

ABSTRACT

Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor lacking identified natural ligands. The synthetic estrogen receptor ligands 4-hydroxytamoxifen and diethylstilbestrol have, however, been shown to bind to and abolish the constitutive transcriptional activity of ERRγ. Certain phytoestrogens were recently reported to act as agonists of the related ERRα. We investigated whether phytoestrogens also modulated the transcriptional activity of ERRγ. We analyzed a selection of phytoestrogens for their potential agonistic or antagonistic activity on ERRγ. In transiently transfected PC-3 and U2-OS cells equol stimulated the transcriptional activity of ERRγ and enhanced its interaction with the coactivator GRIP1. The agonistic effect of equol was abolished by 4-hydroxytamoxifen. Equol induced a conformational change in the ERRγ ligand-binding domain. Based on structural models of the ERRγ ligand-binding domain, we were able to introduce mutations that modulated the agonistic potential of equol. Finally, equol enhanced the growth inhibitory effect of ERRγ on the prostate cancer PC-3 cells. In conclusion, we have demonstrated that the phytoestrogen equol acts as an ERRγ agonist.


Subject(s)
Isoflavones/pharmacology , Phytoestrogens/pharmacology , Receptors, Estrogen/metabolism , Transcriptional Activation , Animals , Cell Line, Tumor , Equol , Estrogen Antagonists/pharmacology , Humans , Mice , Receptors, Estrogen/genetics , ERRalpha Estrogen-Related Receptor
18.
Cell Mol Life Sci ; 68(3): 537-51, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20690035

ABSTRACT

ORP1L is an oxysterol binding homologue that regulates late endosome (LE) positioning. We show that ORP1L binds several oxysterols and cholesterol, and characterize a mutant, ORP1L Δ560-563, defective in oxysterol binding. While wild-type ORP1L clusters LE, ORP1L Δ560-563 induces LE scattering, which is reversed by disruption of the endoplasmic reticulum (ER) targeting FFAT motif, suggesting that it is due to enhanced LE-ER interactions. Endosome motility is reduced upon overexpression of ORP1L. Both wild-type ORP1L and the Δ560-563 mutant induce the recruitment of both dynactin and kinesin-2 on LE. Most of the LE decorated by overexpressed ORP1L fail to accept endocytosed dextran or EGF, and the transfected cells display defective degradation of internalized EGF. ORP1L silencing in macrophage foam cells enhances endosome motility and results in inhibition of [(3)H]cholesterol efflux to apolipoprotein A-I. These data demonstrate that LE motility and functions in both protein and lipid transport are regulated by ORP1L.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Endosomes/metabolism , Sterols/metabolism , Animals , Apolipoprotein A-I/metabolism , Carrier Proteins/analysis , Cell Line , Cholesterol/metabolism , Endocytosis , Endosomes/ultrastructure , Gene Expression Regulation , HeLa Cells , Humans , Lysosomes/metabolism , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Models, Molecular , Molecular Motor Proteins/metabolism , Mutation , Protein Binding , Receptors, Steroid
19.
Mol Biol Cell ; 21(8): 1362-74, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20181830

ABSTRACT

Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p-Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.


Subject(s)
Membrane Fusion , Membrane Proteins/metabolism , Munc18 Proteins/chemistry , Munc18 Proteins/metabolism , Peptides/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Substitution/genetics , Binding Sites , Models, Molecular , Mutation/genetics , Protein Binding , Protein Interaction Mapping , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Qa-SNARE Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Spores, Fungal/cytology , Spores, Fungal/metabolism
20.
Biopolymers ; 91(10): 884-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19582836

ABSTRACT

A structure-based comparison of the ligand-binding domains of 35 nuclear receptors from five different subfamilies is presented. Their ligand and coactivator binding sites are characterized using knowledge-based contact preference fields for hydrophobic and hydrophilic interactions implemented in the MOE modeling environment. Additionally, for polar knowledge-based field points the preference for negative or positive electrostatic interactions is estimated using the Poisson-Boltzmann equation. These molecular-interaction fields are used to cluster the nuclear receptor family based on similarities of their binding sites. By analyzing the similarities and differences of hydrophobic and polar fields in binding pockets of related receptors it is possible to identify conserved interactions in ligand and coactivator binding pockets, which support e.g. design of specific ligands during lead optimization or virtual screening as docking filter. Examples of remarkable similarities between ligand binding sites of members from phylogenetically different nuclear receptor families (RXR, RAR, HNF4, NR5) and differences between closely related subtypes (LXR, RAR, TR) are discussed in more detail. Significant similarities and differences of coactivator binding sites are shown for NR3Cs, LXRs and PPARs.


Subject(s)
Receptors, Cytoplasmic and Nuclear/chemistry , Animals , Binding Sites , Cluster Analysis , Humans , Ligands , Models, Molecular , Protein Structure, Tertiary , Rats , Receptors, Cytoplasmic and Nuclear/classification , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...