Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 16: 995594, 2022.
Article in English | MEDLINE | ID: mdl-36570829

ABSTRACT

The central nervous system (CNS) exerts a strong regulatory influence over the cardiovascular system in response to environmental demands. Floatation-REST (Reduced Environmental Stimulation Therapy) is an intervention that minimizes stimulation from the environment, yet little is known about the autonomic consequences of reducing external sensory input to the CNS. We recently found that Floatation-REST induces a strong anxiolytic effect in anxious patients while paradoxically enhancing their interoceptive awareness for cardiorespiratory sensations. To further investigate the physiologic nature of this anxiolytic effect, the present study measured acute cardiovascular changes during Floatation-REST using wireless and waterproof equipment that allowed for concurrent measurement of heart rate, heart rate variability (HRV), breathing rate, and blood pressure. Using a within-subjects crossover design, 37 clinically anxious participants with high levels of anxiety sensitivity and 20 non-anxious comparison participants were randomly assigned to undergo a 90-min session of either Floatation-REST or an exteroceptive comparison condition that entailed watching a relaxing nature film. Measures of state anxiety and serenity were collected before and after each session, while indices of autonomic activity were measured throughout each session. HRV was calculated using both time-series and frequency domain analyses. Linear mixed-effects modeling revealed a significant main effect of condition such that relative to the film condition, Floatation-REST elicited significant decreases (p < 0.001) in diastolic blood pressure, systolic blood pressure, breathing rate, and certain metrics of HRV including the standard deviation of the interbeat interval (SDNN), low-frequency HRV, and very low-frequency HRV. Heart rate showed a non-significant trend (p = 0.073) toward being lower in the float condition, especially toward the beginning of the session. The only metric that showed a significant increase during Floatation-REST was normalized high-frequency HRV (p < 0.001). The observed physiological changes were consistent across both anxious and non-anxious participants, and there were no significant group by condition interactions. Blood pressure was the only cardiac metric significantly associated with float-related reductions in state anxiety and increases in serenity. These findings suggest that Floatation-REST lowers sympathetic arousal and alters the balance of the autonomic nervous system toward a more parasympathetic state. Clinical trial registration: [https://clinicaltrials.gov/show/NCT03051074], identifier [NCT03051074].

2.
Hum Brain Mapp ; 42(10): 3216-3227, 2021 07.
Article in English | MEDLINE | ID: mdl-33835628

ABSTRACT

Floatation-Reduced Environmental Stimulation Therapy (REST) is a procedure that reduces stimulation of the human nervous system by minimizing sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational, and proprioceptive channels, in addition to minimizing musculoskeletal movement and speech. Initial research has found that Floatation-REST can elicit short-term reductions in anxiety, depression, and pain, yet little is known about the brain networks impacted by the intervention. This study represents the first functional neuroimaging investigation of Floatation-REST, and we utilized a data-driven exploratory analysis to determine whether the intervention leads to altered patterns of resting-state functional connectivity (rsFC). Healthy participants underwent functional magnetic resonance imaging (fMRI) before and after 90 min of Floatation-REST or a control condition that entailed resting supine in a zero-gravity chair for an equivalent amount of time. Multivariate Distance Matrix Regression (MDMR), a statistically-stringent whole-brain searchlight approach, guided subsequent seed-based connectivity analyses of the resting-state fMRI data. MDMR identified peak clusters of rsFC change between the pre- and post-float fMRI, revealing significant decreases in rsFC both within and between posterior hubs of the default-mode network (DMN) and a large swath of cortical tissue encompassing the primary and secondary somatomotor cortices extending into the posterior insula. The control condition, an active form of REST, showed a similar pattern of reduced rsFC. Thus, reduced stimulation of the nervous system appears to be reflected by reduced rsFC within the brain networks most responsible for creating and mapping our sense of self.


Subject(s)
Connectome , Default Mode Network/physiology , Hydrotherapy , Insular Cortex/physiology , Motor Cortex/physiology , Nerve Net/physiology , Sensory Deprivation/physiology , Somatosensory Cortex/physiology , Adolescent , Adult , Default Mode Network/diagnostic imaging , Female , Humans , Insular Cortex/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging , Somatosensory Cortex/diagnostic imaging , Young Adult
3.
Article in English | MEDLINE | ID: mdl-29656950

ABSTRACT

BACKGROUND: Floatation-REST (Reduced Environmental Stimulation Therapy), an intervention that attenuates exteroceptive sensory input to the nervous system, has recently been found to reduce state anxiety across a diverse clinical sample with high levels of anxiety sensitivity (AS). To further examine this anxiolytic effect, the present study investigated the affective and physiological changes induced by Floatation-REST and assessed whether individuals with high AS experienced any alterations in their awareness for interoceptive sensation while immersed in an environment lacking exteroceptive sensation. METHODS: Using a within-subject crossover design, 31 participants with high AS were randomly assigned to undergo a 90-minute session of Floatation-REST or an exteroceptive comparison condition. Measures of self-reported affect and interoceptive awareness were collected before and after each session, and blood pressure was measured during each session. RESULTS: Relative to the comparison condition, Floatation-REST generated a significant anxiolytic effect characterized by reductions in state anxiety and muscle tension and increases in feelings of relaxation and serenity (p < .001 for all variables). Significant blood pressure reductions were evident throughout the float session and reached the lowest point during the diastole phase (average reduction >12 mm Hg). The float environment also significantly enhanced awareness and attention for cardiorespiratory sensations. CONCLUSIONS: Floatation-REST induced a state of relaxation and heightened interoceptive awareness in a clinical sample with high AS. The paradoxical nature of the anxiolytic effect in this sample is discussed in relation to Wolpe's theory of reciprocal inhibition and the regulation of distress via sustained attention to present moment visceral sensations such as the breath.


Subject(s)
Anxiety Disorders/physiopathology , Anxiety/physiopathology , Attention/physiology , Awareness/physiology , Interoception/physiology , Adult , Anti-Anxiety Agents , Emotions/physiology , Female , Humans , Male , Middle Aged , Self Concept , Sensation/physiology , Young Adult
4.
PLoS One ; 13(2): e0190292, 2018.
Article in English | MEDLINE | ID: mdl-29394251

ABSTRACT

Floatation-REST (Reduced Environmental Stimulation Therapy) reduces sensory input to the nervous system through the act of floating supine in a pool of water saturated with Epsom salt. The float experience is calibrated so that sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational and proprioceptive channels are minimized, as is most movement and speech. This open-label study aimed to examine whether Floatation-REST would attenuate symptoms of anxiety, stress, and depression in a clinical sample. Fifty participants were recruited across a spectrum of anxiety and stress-related disorders (posttraumatic stress, generalized anxiety, panic, agoraphobia, and social anxiety), most (n = 46) with comorbid unipolar depression. Measures of self-reported affect were collected immediately before and after a 1-hour float session, with the primary outcome measure being the pre- to post-float change score on the Spielberger State Anxiety Inventory. Irrespective of diagnosis, Floatation-REST substantially reduced state anxiety (estimated Cohen's d > 2). Moreover, participants reported significant reductions in stress, muscle tension, pain, depression and negative affect, accompanied by a significant improvement in mood characterized by increases in serenity, relaxation, happiness and overall well-being (p < .0001 for all variables). In reference to a group of 30 non-anxious participants, the effects were found to be more robust in the anxious sample and approaching non-anxious levels during the post-float period. Further analysis revealed that the most severely anxious participants reported the largest effects. Overall, the procedure was well-tolerated, with no major safety concerns stemming from this single session. The findings from this initial study need to be replicated in larger controlled trials, but suggest that Floatation-REST may be a promising technique for transiently reducing the suffering in those with anxiety and depression. TRIAL REGISTRATION: ClinicalTrials.gov NCT03051074.


Subject(s)
Anxiety/therapy , Depression/therapy , Sensory Deprivation , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL