Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(27): 29186-29204, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005818

ABSTRACT

3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces. Scaffolds included polycaprolactone (PCL) as the primary polymer, ß-tricalcium phosphate (ß-TCP) as the ceramic filler, and poly(ethylene glycol) (PEG) as a porogen. The pressurized filament extrusion gave flexible filaments composed of PCL, ß-TCP, and PEG, which are ready to use in fused filament fabrication (FFF) 3D printers. Washing of 3D-printed scaffolds in ethanol solution removed PEG and revealed a microporous structure and ceramic particles on the scaffold's surfaces. Furthermore, 3D-printed materials exhibit good printing precision, no cytotoxic properties, and highly impact MG63 cell alignment. Although combining PCL, PEG, and ß-TCP is quite popular, the presented method allows the production of porous scaffolds with a well-organized structure without advanced equipment, and the produced filaments can be used to 3D print scaffolds on a simple commercially available 3D printer.

2.
ACS Biomater Sci Eng ; 10(7): 4388-4399, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38856968

ABSTRACT

In this study, fibrous polyurethane (PU) materials with average fiber diameter of 200, 500, and 1000 nm were produced using a solution blow spinning (SBS) process. The effects of the rotation speed of the collector (in the range of 200-25 000 rpm) on the fiber alignment and diameter were investigated. The results showed that fiber alignment was influenced by the rotation speed of the collector, and such alignment was possible when the fiber diameter was within a specific range. Homogeneously oriented fibers were obtained only for a fiber diameter ≥500 nm. Moreover, the changes in fiber orientation and fiber diameter (resulting from changes in the rotation speed of the collector) were more noticeable for materials with an average fiber diameter of 1000 nm in comparison to 500 nm, which suggests that the larger the fiber diameter, the better the controlled architectures that can be obtained. The porosity of the produced scaffolds was about 65-70%, except for materials with a fiber diameter of 1000 nm and aligned fibers, which had a higher porosity (76%). Thus, the scaffold pore size increased with increasing fiber diameter but decreased with increasing fiber alignment. The mechanical properties of fibrous materials strongly depend on the direction of stretching, whereby the fiber orientation influences the mechanical strength only for materials with a fiber diameter of 1000 nm. Furthermore, the fiber diameter and alignment affected the pericyte growth. Significant differences in cell growth were observed after 7 days of cell culture between materials with a fiber diameter of 1000 nm (cell coverage 96-99%) and those with a fiber diameter of 500 nm (cell coverage 70-90%). By appropriately setting the SBS process parameters, scaffolds can be easily adapted to the cell requirements, which is of great importance in producing complex 3D structures for guided tissue regeneration.


Subject(s)
Pericytes , Polyurethanes , Tissue Scaffolds , Polyurethanes/chemistry , Tissue Scaffolds/chemistry , Pericytes/cytology , Pericytes/physiology , Porosity , Animals , Cell Proliferation , Tissue Engineering/methods , Materials Testing
3.
J Biol Eng ; 18(1): 37, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844979

ABSTRACT

Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue. Nanofibrous mats were used as scaffolds for adult primary human cardiomyocytes (HCM) and immature human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). This work focuses on understanding the effects of hypoxia and re-oxygenation on human cardiac cells cultured on polymer nanofibrous mats made of poly(ε-caprolactone) (PCL) and polyurethane (PU). The expression of selected genes and proteins in cardiomyocytes during hypoxia and re-oxygenation were evaluated. In addition, the type of cell death was analyzed. To the best of our knowledge, there are no studies on the effects of hypoxia on cardiomyocyte cells cultured on nanofibrous mats. The present study aimed to use nanofiber mats as scaffolds that structurally could mimic cardiac extracellular matrix. Understanding the impact of 3D structural properties in vitro cardiac models on different human cardiomyocytes is crucial for advancing cardiac tissue engineering and regenerative medicine. Observing how 3D scaffolds affect cardiomyocyte function under hypoxic conditions is necessary to understand the functioning of the entire human heart.

4.
Sci Rep ; 14(1): 12975, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839879

ABSTRACT

Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs. Among these strategies, nanofibrous scaffolds offer more accurate mimicry of the functioning of cardiac tissue structures in the human body. However, further research is needed on the use of nanofibrous mats to understand their effects on iPSC-CMs. Our research aimed to evaluate the suitability of poly(ε-caprolactone) (PCL) and polyurethane (PU) nanofibrous mats with different elasticities as materials for the maturation of iPSC-CMs. Analysis of cell morphology and orientation and the expression levels of selected genes and proteins were performed to determine the effect of the type of nanofibrous mats on the maturation of iPSC-CMs after long-term (10-day) culture. Understanding the impact of 3D structural properties in in vitro cardiac models on induced pluripotent stem cell-derived cardiomyocyte maturation is crucial for advancing cardiac tissue engineering and regenerative medicine because it can help optimize conditions for obtaining more mature and functional human cardiomyocytes.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Nanofibers , Polyesters , Polyurethanes , Tissue Scaffolds , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Polyurethanes/chemistry , Polyesters/chemistry , Nanofibers/chemistry , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Cells, Cultured
5.
J Biomed Mater Res B Appl Biomater ; 112(6): e35409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38786580

ABSTRACT

The challenge of integrating hydroxyapatite nanoparticles (nHAp) with polymers is hindered by the conflict between the hydrophilic and hygroscopic properties of nHAp and the hydrophobic properties of polymers. This conflict particularly affects the materials when calcium phosphates, including nHAp, are used as a filler in composites in thermal processing applications such as 3D printing with fused filament fabrication (FFF). To overcome this, we propose a one-step surface modification of nHAp with calcium stearate monolayer. Moreover, to build the scaffold with suitable mechanical strength, we tested the addition of nHAp with diverse morphology-spherical, plate- and rod-like nanoparticles. Our analysis showed that the composite of polycaprolactone (PCL) reinforced with nHAp with rod and plate morphologies modified with calcium stearate monolayer exhibited a significant increase in compressive strength. However, composites with spherical nHAp added to PCL showed a significant reduction in compressive modulus and compressive strength, but both parameters were within the applicability range of hard tissue scaffolds. None of the tested composite scaffolds showed cytotoxicity in L929 murine fibroblasts or MG-63 human osteoblast-like cells, supporting the proliferation of the latter. Additionally, PCL/nHAp scaffolds reinforced with spherical nHAp caused osteoactivation of bone marrow human mesenchymal stem cells, as indicated by alkaline phosphatase activity and COL1, RUNX2, and BGLAP expression. These results suggest that the calcium stearate monolayer on the surface of the nHAp particles allows the production of polymer/nHAp composites suitable for hard tissue engineering and personalized implant production in 3D printing using the FFF technique.


Subject(s)
Durapatite , Nanoparticles , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Mice , Animals , Humans , Nanoparticles/chemistry , Cell Line , Polyesters/chemistry , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/drug effects , Materials Testing
6.
Biomed Mater ; 19(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38290152

ABSTRACT

Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(ϵ-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used. They were rat ventricular cardiomyoblasts (H9c2), mouse atrial cardiomyocytes (CMs) (HL-1), and human ventricular CMs. Based on the results, it can be concluded that cardiac cells cultured on nanofibers exhibit greater maturity in terms of orientation, morphology, and gene expression levels compared to cells cultured on polystyrene plates. Additionally, the physicochemical properties of nanofibers affecting the functionality of cardiac cells from different species and different parts of the heart were evaluated. These studies can support research on understanding and explaining mechanisms leading to cellular maturity present in the heart and the selection of nanofibers that will effectively help the maturation of CMs.


Subject(s)
Nanofibers , Tissue Scaffolds , Humans , Rats , Mice , Animals , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyurethanes , Rodentia , Polyesters/chemistry , Tissue Engineering/methods
7.
HardwareX ; 16: e00486, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964896

ABSTRACT

3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials. Commercial extruders frequently require a large amount of raw material for experimental purposes, even for small quantities of filament. In our publication, we propose a simple system for pressure filament extruding, which allows obtaining up to 1-meter-long filament suitable for fused filament fabrication-type 3D printers, requiring only 30 g of material to begin work. Our device is based on stainless steel pipes used as a container for material, a basic electric heating system with a proportional-integral-derivative controller, and a pressurised air source with an air pressure regulator. We tested our device on various mixes of polylactide and polycaprolactone with ß-tricalcium phosphate and demonstrated the possibility of screening production and testing of new materials for 3D-printed bone implants.

8.
Polymers (Basel) ; 15(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38006099

ABSTRACT

The nanoprecipitation method was used to formulate ε-polycaprolactone (PCL) into fluorescent nanoparticles. Two methods of mixing the phases were evaluated: introducing the organic phase into the aqueous phase dropwise and via a specially designed microfluidic device. As a result of the nanoprecipitation process, fluorescein-loaded nanoparticles (NPs) with a mean diameter of 127 ± 3 nm and polydispersity index (PDI) of 0.180 ± 0.009 were obtained. The profiles of dye release were determined in vitro using dialysis membrane tubing, and the results showed a controlled release of the dye from NPs. In addition, the cytotoxicity of the NPs was assessed using an MTT assay. The PCL NPs were shown to be safe and non-toxic to L929 and MG63 cells. The results of the present study have revealed that PCL NPs represent a promising system for developing new drug delivery systems.

9.
ACS Biomater Sci Eng ; 9(12): 6683-6697, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38032398

ABSTRACT

Poly(carbonate-urea-urethane) (PCUU)-based scaffolds exhibit various desirable properties for tissue engineering applications. This study thus aimed to investigate the suitability of PCUU as polymers for the manufacturing of nonwoven mats by electrospinning, able to closely mimic the fibrous structure of the extracellular matrix. PCUU nonwovens of fiber diameters ranging from 0.28 ± 0.07 to 0.82 ± 0.12 µm were obtained with an average surface porosity of around 50-60%. Depending on the collector type and solution concentration, a broad range of tensile strengths (in the range of 0.3-9.6 MPa), elongation at break (90-290%), and Young's modulus (5.7-26.7 MPa) at room temperature of the nonwovens could be obtained. Furthermore, samples collected on the plate collector showed a shape-memory effect with a shape-recovery ratio (Rr) of around 99% and a shape-fixity ratio (Rf) of around 96%. Biological evaluation validated the inertness, stability, and lack of cytotoxicity of PCUU nonwovens obtained on the plate collector. The ability of mesenchymal stem cells (MSCs) and endothelial cells (HUVECs) to attach, elongate, and grow on the surface of the nonwovens suggests that the manufactured nonwovens are suitable scaffolds for tissue engineering applications.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Urethane , Urea , Endothelial Cells , Carbamates
10.
Biomater Adv ; 151: 213489, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37267750

ABSTRACT

Polyester-based granular scaffolds are a potent material for tissue engineering due to their porosity, controllable pore size, and potential to be molded into various shapes. Additionally, they can be produced as composite materials, e.g., mixed with osteoconductive ß-tricalcium phosphate or hydroxyapatite. Such polymer-based composite materials often happen to be hydrophobic, which disrupts cell attachment and decreases cell growth on the scaffold, undermining its primary function. In this work, we propose the experimental comparison of three modification techniques for granular scaffolds to increase their hydrophilicity and cell attachment. Those techniques include atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating. Composite polymer/ß-tricalcium phosphate granules have been produced in a solution-induced phase separation (SIPS) process using commercially available biomedical polymers: poly(lactic acid), poly(lactic-co-glycolic acid), and polycaprolactone. We used thermal assembly to prepare cylindrical scaffolds from composite microgranules. Atmospheric plasma treatment, polydopamine coating, and polynorepinephrine coating showed similar effects on polymer composites' hydrophilic and bioactive properties. All modifications significantly increased human osteosarcoma MG-63 cell adhesion and proliferation in vitro compared to cells cultured on unmodified materials. In the case of polycaprolactone/ß-tricalcium phosphate scaffolds, modifications were the most necessary, as unmodified polycaprolactone-based material disrupted the cell attachment. Modified polylactide/ß-tricalcium phosphate scaffold supported excellent cell growth and showed ultimate compressive strength exceeding this of human trabecular bone. This suggests that all investigated modification techniques can be used interchangeably for increasing wettability and cell attachment properties of various scaffolds for medical applications, especially those with high surface and volumetric porosity, like granular scaffolds.


Subject(s)
Bone Neoplasms , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Polymers/pharmacology , Cell Proliferation
11.
ACS Omega ; 8(24): 22055-22066, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360448

ABSTRACT

Biomaterial's surface functionalization for selective adhesion and patterned cell growth remains essential in developing novel implantable medical devices for regenerative medicine applications. We built and applied a 3D-printed microfluidic device to fabricate polydopamine (PDA) patterns on the surface of polytetrafluoroethylene (PTFE), poly(l-lactic acid-co-D,l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) (PLGA). Then, we covalently attached the Val-Ala-Pro-Gly (VAPG) peptide to the created PDA pattern to promote the adhesion of the smooth muscle cells (SMCs). We proved that the fabrication of PDA patterns allows for the selective adhesion of mouse fibroblast and human SMCs to PDA-patterned surfaces after only 30 min of in vitro cultivation. After 7 days of SMC culture, we observed the proliferation of cells only along the patterns on PTFE but over the entire surface of the PLA and PLGA, regardless of patterning. This means that the presented approach is beneficial for application to materials resistant to cell adhesion and proliferation. The additional attachment of the VAPG peptide to the PDA patterns did not bring measurable benefits due to the high increase in adhesion and patterned cell proliferation by PDA itself.

12.
Biomater Adv ; 146: 213317, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36738523

ABSTRACT

3D printing is a promising technique for obtaining bone implants. However, 3D printed bone implants, especially those printed using fused deposition modelling, are still in the experimental phase despite decades of work. Research on new materials faces numerous limitations, such as reagents' cost and machines' high prices to produce filaments for 3D printing polymer-ceramic composites for fused deposition modelling. This paper presents a simple, low-cost, and fast method of obtaining polymer-ceramic filaments using apparatus consisting of parts available in a hardware store. The method's versatility for producing the filaments was demonstrated on two different biodegradable polymers - polylactic acid and polycaprolactone - and different concentrations of calcium phosphate - ß-tricalcium phosphate - in the composite, up to 50 % by weight. For screening purposes, numerous scaffolds were 3D printed from the obtained filaments on a commercial 3D printer. Structural, mechanical, and biological tests show that the 3D printed scaffolds are suitable for bone implants, as their structure, mechanical, and non-cytotoxic properties are evident. Moreover, the proposed method of composite forming is a simplification of the processes of manufacturing and researching 3D printed materials with potential applications in the regeneration of bone tissue.


Subject(s)
Bone and Bones , Polymers , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Ceramics
13.
Biomater Adv ; 144: 213195, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36434927

ABSTRACT

Synthetic bone repair materials are becoming increasingly popular in tissue engineering as a replacement for autografts and human/animal-based bone grafts. The biomedical application requires precise control over the material composition and structure, as well as over the size of granulate used for filling the bone defects, as the pore size and interconnectivity affect the regeneration process. This paper proposes a process of alloplastic and biodegradable polylactic acid/ß-tricalcium phosphate granulates preparation and its parameters described. Using solvent-induced phase separation technique, porous spheres have been obtained in various sizes and morphologies. The design of the experiment's approach generated an experimental plan for further statistical modeling using the resulting data. The statistical modeling approach to the data from conducting a designed set of experiments allowed analysis of the influence of process parameters on the properties of the resulting granules. We confirmed that the content of ß-tricalcium phosphate plays the most significant role in the size distribution of prepared granulate. The shape of the particles becomes less spherical with higher phosphate concentration in the emulsion. The proposed technique allows preparing porous granulates in the 0.2-1.8 mm diameter range, where granules' mean diameter and sphericity are tunable with polymer and phosphate concentrations. The granulate created a potentially implantable scaffold for resected bone regeneration, as cytotoxicity tests assured the material is non-cytotoxic in vitro, and human mesenchymal stem cells have been cultured on the surface of granulates. Results from cell cultures seeded on the Resomer LR 706S granulates were the most promising.


Subject(s)
Calcium Phosphates , Tissue Scaffolds , Animals , Humans , Tissue Scaffolds/chemistry , Porosity , Calcium Phosphates/chemistry
14.
Adv Funct Mater ; 33(40)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-38464762

ABSTRACT

Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro-scale vasculature such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length-scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, we adopt two existing techniques to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles (FMPs) were incorporated into microfibers produced by solution electrowriting (SEW) and fiber electropulling (FEP). By loading ECs with superparamagnetic iron oxide nanoparticles (SPIONs), the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice was selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This work introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility for the fields of tissue engineering and regenerative medicine.

15.
Int J Biol Macromol ; 222(Pt A): 856-867, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174868

ABSTRACT

In the present work, a solution blow spun nanofibrous mat comprised of chitosan (CS) and poly(ethylene oxide) (PEO) was obtained as vaginal platform for tenofovir disoproxil fumarate (TDF) to prevent sexually transmitted infections. Apart from physicochemical and mechanical analysis, the specific steps involved studies on nanofibrous mat mucoadhesive and swelling characteristics upon pH fluctuations over the physiological range. Physicochemical analysis showed uniform drug distribution within the CS/PEO mat volume and pointed toward physical interactions between the drug and polymers. TDF-loaded CS/PEO nanofibrous mat was shown potentially safe when evaluated by the MTT metabolic activity and JC-1 assays in human vaginal epithelial cells VK2-E6/E7. In vitro antiviral studies indicated inhibition efficacy of TDF-CS/PEO nanofibrous mat toward HSV-2 virus and proved the SBS process does not change the microbicidal activity of drug molecule. Fluctuations in the physiological vaginal pH range of 3.8 to 5.0 substantially affected mucoadhesive and swelling behavior of chitosan which in turn impacted drug dissolution rate from polymer carrier. The rate of permeation and accumulation of TDF in vaginal tissue differed in response to vaginal pH. Faster drug permeation assessed at pH 5.0 suggests that an increase in vaginal pH could improve TDF bioavailability at earlier time points.


Subject(s)
Chitosan , Nanofibers , Female , Humans , Tenofovir/pharmacology , Chitosan/chemistry , Nanofibers/chemistry , Polyethylene Glycols/chemistry , Drug Carriers/chemistry , Ethylene Oxide , Fumarates , Polymers/chemistry , Hydrogen-Ion Concentration
16.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563526

ABSTRACT

Chitosan (CS)/poly(ethylene oxide) (PEO)-based nanofiber mats have attracted particular attention as advanced materials for medical and pharmaceutical applications. In the scope of present studies, solution blow spinning was applied to produce nanofibers from PEO and CS and physicochemical and biopharmaceutical studies were carried out to investigate their potential as wound nanomaterial for skin healing and regeneration. Additional coating with hydrophobic poly(dimethylsiloxane) was applied to favor removal of nanofibers from the wound surface. Unmodified nanofibers displayed highly porous structure with the presence of uniform, randomly aligned nanofibers, in contrast to coated materials in which almost all the free spaces were filled in with poly(dimethylsiloxane). Infrared spectroscopy indicated that solution blow technique did not influence the molecular nature of native polymers. Obtained nanofibers exhibited sufficient wound exudate absorbency, which appears beneficial to moisturize the wound bed during the healing process. Formulations displayed greater tensile strength as compared to commercial hydrofiber-like dressing materials comprised of carboxymethylcellulose sodium or calcium alginate, which points toward their protective function against mechanical stress. Coating with hydrophobic poly(dimethylsiloxane) (applied to favor nanofiber removal from the wound surface) impacted porosity and decreased both mechanical properties and adherence to excised human skin, though the obtained values were comparable to those attained for commercial hydrofiber-like materials. In vitro cytotoxicity and irritancy studies showed biocompatibility and no skin irritant response of nanofibers in contact with a reconstituted three-dimensional human skin model, while scratch assay using human fibroblast cell line HDFa revealed the valuable potential of CS/PEO nanofibers to promote cell migration at an early stage of injury.


Subject(s)
Chitosan , Nanofibers , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Dimethylpolysiloxanes , Ethylene Oxide , Humans , Nanofibers/chemistry , Polyethylene Glycols/chemistry
17.
Sci Rep ; 12(1): 9047, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641539

ABSTRACT

Nanofibrous materials are widely investigated as a replacement for the extracellular matrix, the 3D foundation for cells in all tissues. However, as with every medical material, nanofibers too must pass all safety evaluations like in vitro cytotoxicity assays or in vivo animal tests. Our literature research showed that differences in results of widely used cytotoxicity assays applied to evaluate nanofibrous materials are poorly understood. To better explore this issue, we prepared three nanofibrous materials with similar physical properties made of poly-L-lactic acid, polyurethane, and polycaprolactone. We tested five metabolic cytotoxicity assays (MTT, XTT, CCK-8, alamarBlue, PrestoBlue) and obtained different viability results for the same nanofibrous materials. Further, the study revealed that nanofibrous materials affect the reaction of cytotoxicity assays. Considering the results of both described experiments, it is evident that validating all available cytotoxicity assays for nanofibrous materials and possibly other highly porous materials should be carefully planned and verified using an additional analytical tool, like scanning electron microscopy or, more preferably, confocal microscopy.


Subject(s)
Nanofibers , Animals , Extracellular Matrix , Microscopy, Electron, Scanning , Nanofibers/toxicity , Porosity
18.
Biomater Adv ; 134: 112544, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525759

ABSTRACT

Rapid endothelialization helps overcome the limitations of small-diameter vascular grafts. To develop biomimetic non-thrombogenic coatings supporting endothelialization, medical-grade polyurethane (PU) nanofibrous mats and tubular scaffolds with a diameter below 6 mm prepared by solution blow spinning were coated with polydopamine (PDA), or PDA and gelatin (PDA/Gel). The scaffolds were characterized by scanning electron microscopy, porosity measurement, tensile testing, wettability, Fourier Transform Infrared spectroscopy, and termogravimetric analysis, followed by the measurement of coating stability on the tubular scaffolds. The effect of coating on scaffold endothelialization and hemocompatibility was evaluated using human umbilical vein endothelial cells (HUVECs) and human platelets, showing low numbers of adhering platelets and significantly higher numbers of HUVECs on PDA- and PDA/Gel-coated mats compared to control samples. Tubular PU scaffolds and commercial ePTFE prostheses coated with PDA or PDA/Gel were colonized with HUVECs using radial magnetic cell seeding. PDA/Gel-coated samples achieved full endothelial coverage within 1-3 days post-endothelialization. Altogether, PDA and PDA/Gel coating significantly enhance the endothelialization on the flat surfaces, tubular small-diameter scaffolds, and commercial vascular prostheses. The presented approach constitutes a fast and efficient method of improving scaffold colonization with endothelial cells, expected to work equally well upon implantation.


Subject(s)
Coated Materials, Biocompatible , Gelatin , Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Gelatin/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Indoles , Polymers , Polyurethanes/chemistry
19.
J Biol Eng ; 15(1): 27, 2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34924005

ABSTRACT

This study aimed to analyze the growth of two types of blood vessel building cells: endothelial cells (ECs) and smooth muscle cells (SMCs) on surfaces with different morphology. Two types of materials, differing in morphology, were produced by the solution blow spinning technique. One-layer materials consisted of one fibrous layer with two fibrous surfaces. Bi-layer materials consisted of one fibrous-solid layer and one fibrous layer, resulting in two different surfaces. Additionally, materials with different average fiber diameters (about 200, 500, and 900 nm) were produced for each group. It has been shown that it is possible to obtain structures with a given morphology by changing the selected process parameters (working distance and polymer solution concentration). Both morphology (solid versus fibrous) and average fiber diameter (submicron fibers versus microfibers) of scaffolds influenced the growth of ECs. However, this effect was only visible after an extended period of culture (6 days). In the case of SMCs, it was proved that the best growth of SMCs is obtained for micron fibers (with an average diameter close to 900 nm) compared to the submicron fibers (with an average diameter below 900 nm).

20.
Materials (Basel) ; 14(6)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802725

ABSTRACT

The growing popularity of solution blow spinning as a method for the production of fibrous tissue engineering scaffolds and the vast range of polymer-solvent systems available for the method raises the need to study the effect of processing conditions on fiber morphology and develop a method for its qualitative assessment. Rheological approaches to determine polymer solution spinnability and image analysis approaches to describe fiber diameter and alignment have been previously proposed, although in a separate manner and mostly for the widely known, well-researched electrospinning method. In this study, a series of methods is presented to determine the processing conditions for the development of submicron fibrous scaffolds. Rheological methods are completed with extensive image analysis to determine the spinnability window for a polymer-solvent system and qualitatively establish the influence of polymer solution concentration and collector rotational speed on fiber morphology, diameter, and alignment. Process parameter selection for a tissue engineering scaffold target application is discussed, considering the varying structural properties of the native extracellular matrix of the tissue of interest.

SELECTION OF CITATIONS
SEARCH DETAIL
...