Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274644

ABSTRACT

This study focuses on the development of new amino-functionalized magnetic Fe2O3/SiO2 nanocomposites with varying silicate shell ratios (1:0.5, 1:1, and 1:2) for the efficient elimination of Hg2+ ions found in solutions. The Fe2O3/SiO2-NH2 adsorbents were characterized for their structural, surface, and magnetic properties using various techniques, including Fourier transform infrared spectrum (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Braunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), zeta-potential, and particle size measurement. We investigated the adsorption circumstances, such as pH, dosage of the adsorbent, and duration of adsorption. The pH value that yielded the best results was determined to be 5.0. The Fe2O3/SiO2-NH2 adsorbent with a silicate ratio of (1:2) exhibited the largest amount of adsorption capacity of 152.03 mg g-1. This can be attributed to its significantly large specific surface area of 100.1 m2 g-1, which surpasses that of other adsorbents. The adsorbent with amino functionalization demonstrated a strong affinity for Hg2+ ions due to the chemical interactions between the metal ions and the amino groups on the surface. The analysis of adsorption kinetics demonstrated that the adsorption outcomes adhere to the pseudo-second-order kinetic model. The study of adsorption isotherms revealed that the adsorption followed the Langmuir model, indicating that the adsorption of Hg2+ ions with the adsorbent occurred as a monomolecular layer adsorption process. Furthermore, the thermodynamic analyses revealed that the adsorption of Hg2+ ions using the adsorbent was characterized by a spontaneous and endothermic process. Additionally, the adsorbent has the ability to selectively extract mercury ions from a complex mixture of ions. The Fe2O3/SiO2-NH2 nanocomposite, which is loaded with metal, can be easily recovered from a water solution due to its magnetic properties. Moreover, it can be regenerated effortlessly through acid treatment. This study highlights the potential use of amino-functionalized Fe2O3/SiO2 magnetic nanoparticles as a highly efficient, reusable adsorbent for the removal of mercury ions from contaminated wastewater.

2.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274923

ABSTRACT

The present study explores the synthesis and bio-safety evaluation of gadolinium-doped carbon quantum dots (GCQDs) as a potential dual-contrast agent for diagnostic imaging. GCQDs exhibit both fluorescent and magnetic properties, making them suitable for UV-Vis and magnetic resonance imaging (MRI). The synthesis of GCQDs was achieved via hydrothermal treatment, incorporating gadolinium into the carbon quantum dot matrix. The magnetic properties of GCQDs were analyzed, showing significantly enhanced values compared to gadobutrol, a common MRI contrast agent. However, synthesis constraints limit the gadolinium content achievable in nanodots. To assess the safety of GCQDs, their effects on the embryonic development of zebrafish (Danio rerio) were examined. Various concentrations of GCQDs were tested, observing mortality rates, hatchability, malformations, heartbeats, spontaneous movement, and GCQDs uptake. Dialysis studies indicated that gadolinium ions are incorporated into the internal structure of the carbon nanodots. Zebrafish toxicity tests revealed that while survival rates were comparable to control groups, hatchability decreased significantly with higher gadolinium concentrations in GCQDs. Fluorescence microscopy showed no statistical differences in the fluorescence intensity between groups. These findings suggest that GCQDs could serve as an effective dual-contrast agent, combining the optical imaging capabilities of CQDs with the enhanced MRI contrast provided by gadolinium. This study underscores the need for further research on the synthesis methods and biological interactions of GCQDs to ensure their safety and efficacy in medical applications.


Subject(s)
Carbon , Contrast Media , Gadolinium , Magnetic Resonance Imaging , Quantum Dots , Zebrafish , Quantum Dots/chemistry , Quantum Dots/toxicity , Gadolinium/chemistry , Contrast Media/chemistry , Contrast Media/chemical synthesis , Animals , Zebrafish/embryology , Carbon/chemistry , Magnetic Resonance Imaging/methods , Diagnostic Imaging/methods
3.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930276

ABSTRACT

In this work, we report on the fabrication of ZnO thin films doped with Ge via the ALD method. With an optimized amount of Ge doping, there was an improvement in the conductivity of the films owing to an increase in the carrier concentration. The optical properties of the films doped with Ge show improved transmittance and reduced reflectance, making them more attractive for opto-electronic applications. The band gap of the films exhibits a blue shift with Ge doping due to the Burstein-Moss effect. The variations in the band gap and the work function of ZnO depend strongly on the carrier density of the films. From the surface studies carried out using XPS, we could confirm that Ge replaces some of the Zn in the wurtzite structure. In the films containing Ge, the concentration of oxygen vacancies is also high, which is somehow related to the poor electrical properties of the films at higher Ge concentrations.

4.
J Phys Chem A ; 128(2): 488-499, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38170590

ABSTRACT

A new method for measuring the magnetic properties of aqueous and organic solutions is presented. This approach is based on quantifying the force resulting from the sample's interaction with a magnetic field. The experimental setup utilizes neodymium magnets attached to a stepper motor to adjust the distance between the magnets and the test sample, while an analytical balance serves as a strain gauge. Magnetic susceptibility measurements were performed on selected inorganic and organic solutions. A series of finite element simulations allowed us to convert experimental results to physical quantities describing magnetic susceptibilities of substances. The limit of detection (LoD) and limit of quantification (LoQ) values for the developed method of determining magnetic susceptibility were equal to 6.67·10-3 M and 2.02·10-2 M, respectively.

5.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069083

ABSTRACT

Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).


Subject(s)
Metal Nanoparticles , Serum Albumin , Gold/chemistry , Serum Albumin, Bovine/chemistry , Thermodynamics , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence
6.
Materials (Basel) ; 16(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37512293

ABSTRACT

Thin films of tin (II) sulfide (SnS) were deposited onto a 500 µm thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 °C for 5 min. The microstructure of the SnS films analyzed by scanning electron microscopy (SEM) showed a compact morphology of the films deposited at 80 °C. The edges of the SnS grains were rounded off with the addition of a commercial surfactant. The thickness of different SnS layers deposited on the copper substrate was found to be 230 nm from spectroscopic ellipsometry and cross-section analysis using SEM. The deposition parameters such as temperature, surfactant addition, and sodium doping time did not affect the thickness of the layers. From the X-ray diffraction (XRD) analysis, the size of the SnS crystallites was found to be around 44 nm. Depending on the process conditions, Na doping affects the size of the crystallites in different ways. A study of the conductivity of SnS films provides a specific conductivity value of 0.3 S. The energy dispersive analysis of X-rays (EDAX) equipped with the SEM revealed the Sn:S stoichiometry of the film to be 1:1, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The determined band-gap of SnS is equal to 1.27 eV and is in good agreement with the literature data.

7.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373007

ABSTRACT

Canine osteosarcoma (OS) is an aggressive bone tumor with high metastatic potential and poor prognosis, mainly due to metastatic disease. Nanomedicine-based agents can be used to improve both primary and metastatic tumor treatment. Recently, gold nanoparticles were shown to inhibit different stages of the metastatic cascade in various human cancers. Here, we assessed the potential inhibitory effect of the glutathione-stabilized gold nanoparticles (Au-GSH NPs) on canine OS cells extravasation, utilizing the ex ovo chick embryo chorioallantoic membrane (CAM) model. The calculation of cells extravasation rates was performed using wide-field fluorescent microscopy. Transmission electron microscopy and Microwave Plasma Atomic Emission Spectroscopy revealed Au-GSH NPs absorption by OS cells. We demonstrated that Au-GSH NPs are non-toxic and significantly inhibit canine OS cells extravasation rates, regardless of their aggressiveness phenotype. The results indicate that Au-GSH NPs can act as a possible anti metastatic agent for OS treatment. Furthermore, the implemented CAM model may be used as a valuable preclinical platform in veterinary medicine, such as testing anti-metastatic agents.


Subject(s)
Bone Neoplasms , Metal Nanoparticles , Osteosarcoma , Chick Embryo , Animals , Dogs , Humans , Chickens , Gold/pharmacology , Gold/chemistry , Chorioallantoic Membrane/pathology , Metal Nanoparticles/chemistry , Bone Neoplasms/pathology , Glutathione , Osteosarcoma/drug therapy , Osteosarcoma/pathology
8.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835259

ABSTRACT

Ni coatings with high catalytic efficiency were synthesised in this work, obtained by increasing the active surface and modifying Pd as a noble metal. Porous Ni foam electrodes were obtained by electrodeposition of Al on a nickel substrate. Deposition of Al was carried out with potential -1.9 V for a time of 60 min in NaCl-KCl-3.5 mol%AlF3 molten salt mixture at 900 °C, which is connected with the formation of the Al-Ni phase in the solid state. Dissolution of Al and Al-Ni phases was performed by application of the potential -0.5 V, which provided the porous layer formation. The obtained porous material was compared to flat Ni plates in terms of electrocatalytic properties for ethanol oxidation in alkaline solutions. Cyclic voltammetry measurements in the non-Faradaic region revealed the improvement in morphology development for Ni foams, with an active surface area 5.5-times more developed than flat Ni electrodes. The catalytic activity was improved by the galvanic displacement process of Pd(II) ions from dilute chloride solutions (1 mM) at different times. In cyclic voltammetry scans, the highest catalytic activity was registered for porous Ni/Pd decorated at 60 min, where the maximum oxidation peak for 1 M ethanol achieved +393 mA cm-2 compared to the porous unmodified Ni electrode at +152 mA cm-2 and flat Ni at +55 mA cm-2. Chronoamperometric measurements in ethanol oxidation showed that porous electrodes were characterised by higher catalytic activity than flat electrodes. In addition, applying a thin layer of precious metal on the surface of nickel increased the recorded anode current density associated with the electrochemical oxidation process. The highest activity was recorded for porous coatings after modification in a solution containing palladium ions, obtaining a current density value of about 55 mA cm-2, and for a flat unmodified electrode, only 5 mA cm-2 after 1800 s.


Subject(s)
Nickel , Salts , Electrochemistry , Porosity , Nickel/chemistry , Alloys , Solubility , Electrodes , Ethanol/chemistry
9.
Materials (Basel) ; 16(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676395

ABSTRACT

This publication presents the synthesis of core-shell nanoparticles, where the core was Ni, and the shell was a Ag-Ni nano alloy. The synthesis was based on the reduction of Ni and Ag ions with sodium borohydride in the presence of trisodium citrate as a stabilizer. In order to determine the phase composition of the obtained nanoparticles, an XRD study was performed, and in order to identify the oxidation states of the nanoparticle components, an XPS spectroscopic study was performed. The composition and shape of the particles were determined using the HR-TEM EDS test. The obtained nanoparticles had a size of 11 nm. The research on catalytic properties was carried out in the model methylene blue reduction system. The investigation of the catalytic activity of colloids was carried out with the use of UV-Vis spectrophotometry. The Ag-Ni alloy was about ten times more active than were pure silver nanoparticles of a similar size.

10.
Antioxidants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275633

ABSTRACT

Caramel, defined as a coloring agent and as an antioxidant, is used in several kinds of food products and is consumed by many people in different amounts. In our research we showed that the caramelization of sucrose under special conditions leads to the formation of carbon quantum dots (CQDs). So, it makes sense that humans also consume this type of CQDs, and it is theoretically possible for these particles to affect the body. Despite an increasing number of studies describing different types of CQDs, their biosafety is still not clearly understood. In our in vitro research, we examined the effects on platelet aggregation, protein glycation and lipid peroxidation of CQDs and caramel formed from a 20% sucrose solution. In vitro aggregation tests were conducted using freshly collected whole rat blood in a multiplate platelet function analyzer and measurer of electric impedance. The cytotoxic effect of the tested solutions on blood platelets was evaluated based on the release of lactate dehydrogenase. The formation of glycated bovine serum albumin was measured as fluorescence intensity and fructosamine level. The reducing power of the solutions was determined in adipose tissue, and their effect on lipid peroxidation in adipose tissue in vitro was also assessed. By measuring the intensity of hemolysis after incubation in solutions with red blood cell, we assessed their influence on the integration of the red blood cell membrane. All tests were performed in comparison with glucose and fructose and other frequently used sweeteners, such as erythritol and xylitol. Our study showed that caramel and CQDs formed from caramel may influence the glycation process and integrity of the red blood cell membrane, but unlike glucose and fructose, they decrease lipid peroxidation and may reduce Fe (III). Additionally, it is unlikely that they affect platelet aggregation. Compared to glucose and fructose, they may be safer for patients with metabolic disorders; however, further research is needed on the safety and biological activity of caramel and CQD.

11.
Materials (Basel) ; 17(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203899

ABSTRACT

Platinum group metals (PGMs), including palladium, play a pivotal role in various industries due to their unique properties. Palladium is frequently employed in technologies aimed at environmental preservation, such as catalytic converters that reduce harmful emissions from vehicles, and in the production of clean energy, notably in the hydrogen evolution process. Regrettably, the production of this vital metal for our environment is predominantly centered in two countries-Russia and South Africa. This centralization has led to palladium being classified as a critical raw material, emphasizing the importance of establishing a secure and sustainable supply chain, as well as employing the most efficient methods for processing materials containing palladium. This review explores techniques for palladium production from primary sources and innovative recycling methods, providing insights into current technologies and emerging approaches. Furthermore, it investigates the economic aspects of palladium production, including price fluctuations influenced by emission regulations and electric vehicle sales, and establishes connections between palladium prices, imports from major producers, as well as copper and nickel prices, considering their often co-occurrence in ores.

12.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557861

ABSTRACT

Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials that can be prepared from a number of organic precursors. In this research, they are prepared using fat-free UHT cow milk through the hydrothermal method. FTIR analysis shows C=O and C-H bond presence, as well as nitrogen-based bond like C-N, C=N and -NH2 presence in CDs, while the absorption spectra show the absorption band at 280 ± 3 nm. Next, the Biuret test was performed, with the results showing no presence of unreacted proteins in CDs. It can be said that all proteins are converted in CDs. Photo luminance spectra shows the emission of CDs is 420 nm and a toxicity study of CDs was performed. The Presto Blue method was used to test the toxicity of CDs for murine hippocampal cells. CDs at a concentration of 4 mg/mL were hazardous independent of synthesis time, while the toxicity was higher for lower synthesis times of 1 and 2 h. When the concentration is reduced in 1 and 2 h synthesized CDs, the cytotoxic effect also decreases significantly, ensuring a survival rate of 60-80%. However, when the synthesis time of CDs is increased, the cytotoxic effect decreases to a lesser extent. The CDs with the highest synthesis time of 8 h do not show a cytotoxic effect above 60%. The cytotoxicity study shows that CDs may have a concentration and time-dependent cytotoxic effect, reducing the number of viable cells by 40%.


Subject(s)
Quantum Dots , Animals , Mice , Quantum Dots/toxicity , Quantum Dots/chemistry , Milk , Carbon/toxicity , Carbon/chemistry , Fluorescent Dyes/chemistry
13.
Materials (Basel) ; 14(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947198

ABSTRACT

In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2-6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.

14.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34947636

ABSTRACT

While numerous papers have been published according to the binary surfactant mixtures, only a few articles provide deeper information on the composition dependence of the micellization, and even less work attempts to apply the enhanced feature of the mixed micelles. The most important parameter of the self-assembled surfactants is the critical micelle concentration (cmc), which quantifies the tendency to associate, and provides the Gibbs energy of micellization. Several techniques are known for determining the cmc, but the isothermal titration calorimetry (ITC) can be used to measure both cmc and enthalpy change (ΔmicH) accompanying micelle formation. Outcomes of our calorimetric investigations were evaluated using a self-developed routine for handling ITC data and the thermodynamic parameters of mixed micelle formation were obtained from the nonlinear modelling of temperature- and composition- dependent enthalpograms. In the investigated temperature and micelle mole fractions interval, we observed some intervals where the cmc is lower than the ideal mixing model predicted value. These equimolar binary surfactant mixtures showed higher solubilization ability for poorly water-soluble model drugs than their individual compounds. Thus, the rapid and fairly accurate calorimetric analysis of mixed micelles can lead to the successful design of a nanoscale drug carrier.

15.
Materials (Basel) ; 14(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34772120

ABSTRACT

The process of noble metals ions recovery and the removal small fraction of nanoparticles from waste solution is an urgent topic not only from the economic but also ecology point of view. In this paper, the use of activated carbon fibers (ACF) as a "trap" for gold nanoparticles obtained by a chemical reduction method is described. The synthesized nanoparticles were stabilized either electrostatically or electrosterically and then deposited on carbon fibers or activated carbon fibers. Moreover, the deposition of metal on fibers was carried out in a batch reactor and a microreactor system. It is shown, that process carried out in the microreactor system is more efficient (95%) as compared to the batch reactor and allows for effective gold nanoparticles removal from the solution. Moreover, for similar conditions, the adsorption time of the AuNPs on ACF is shortened from 11 days for the process carried out in the batch reactor to 2.5 min in the microreactor system.

16.
Molecules ; 26(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202725

ABSTRACT

In the paper, the mechanism of the process of the Rh(III) ions adsorption on activated carbon ORGANOSORB 10-AA was investigated. It was shown, that the process is reversible, i.e., stripping of Rh(III) ions from activated carbon to the solution is also possible. This opens the possibility of industrial recovery of Rh (III) ions from highly dilute aqueous solutions. The activation energies for the forward and backward reaction were determined These are equal to c.a. 7 and 0 kJ/mol. respectively. Unfortunately, the efficiency of this process was low. Obtained maximum load of Rh(III) was equal to 1.13 mg per 1 g of activated carbon.

17.
Materials (Basel) ; 14(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200393

ABSTRACT

In this work, sodium borohydride was used as a strong reductant of traces of platinum complex ions. The investigations of the kinetics of redox reaction between platinum(IV) chloride complex ions and sodium borohydride were carried out. For the first time, the kinetic experiments were carried out in a basic medium (pH~13), which prevents NaBH4 from decomposition and suppresses the release of hydrogen to the environment. The rate constants of Pt(IV) reduction to Pt(II) ions under different temperatures and concentrations of chloride ions conditions were determined. In alkaline solution (pH~13), the values of enthalpy and entropy of activation are 29.6 kJ/mol and -131 J/mol K. It was also found that oxygen dissolved in the solution strongly affects kinetics of the reduction process. Using collected results, the reduction mechanism was suggested. For the first time, the appearance of diborane as an intermediate product during Pt(IV) ions reduction was suggested. Moreover, the influence of oxygen present in the reacting solution on the rate of reduction reaction was also shown.

18.
Sci Rep ; 11(1): 4851, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649494

ABSTRACT

In this paper, a novel method for the synthesis of Pt nanoparticles (PtNPs) using a microwave autoclave reactor is proposed. For benchmarking, the obtained results are compared with the traditional, batch method. A novel process window is proposed, which is the application of high-temperature and high-pressure. The main finding is that this only brings advantage, when the ionic strength of the system is enough low. It is explained, that at high pressure and high temperature, water behaves like only a slightly polar solvent, approaching a subcritical state. This reduces the electrostatic stabilization of the particles. Moreover, a change in the Pt particle shape is observed under high pressure and temperature conditions, suggesting that additional physical-chemical processes are involved.

19.
Micromachines (Basel) ; 9(5)2018 May 18.
Article in English | MEDLINE | ID: mdl-30424181

ABSTRACT

In this paper, micro droplets are generated in a microfluidic focusing contactor and then they move sequentially in a free-flowing mode (no wall contact). For this purpose, two different micro-flow glass devices (hydrophobic and hydrophilic) were used. During the study, the influence of the flow rate of the water phase and the oil phase on the droplet size and size distribution was investigated. Moreover, the influence of the oil phase viscosity on the droplet size was analyzed. It was found that the size and size distribution of the droplets can be controlled simply by the aqueous phase flow rate. Additionally, 2D simulations to determine the droplet size were performed and compared with the experiment.

20.
J Nanopart Res ; 20(9): 239, 2018.
Article in English | MEDLINE | ID: mdl-30237749

ABSTRACT

The synthesis of palladium nanoparticles and conditions of their deposition on active carbon fibers in the microreactor was described. All processes related with metal ion reduction, nucleation, and autocatalytic growth of particles as well as their deposition were carried out in the microreactor in only one cycle. Synthesis of palladium nanoparticles was carried out under different conditions, i.e., changing the initial concentration of metal ions and the reductant, at 40 °C. Depending on the conditions imposed, the nanoparticles of different size (hydrodynamic radius change from 12 to 37 nm) and shape (spherical, cube, pyramid) were obtained. It was also shown that flow conditions allow for much more efficient Pd deposition on active carbon fibers than the process carried out in the batch. It was observed that for concentrations of Pd(II) ions higher than 0.2 mM, the degree of fiber surface coverage increased significantly in comparison with the batch process.

SELECTION OF CITATIONS
SEARCH DETAIL