Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 868: 161454, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36638987

ABSTRACT

The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.


Subject(s)
Animal Testing Alternatives , Toxicity Tests , Animals , Humans , Rats , Benzo(a)pyrene/chemistry , Estrogen Receptor alpha/chemistry , Micronucleus Tests/methods , Organisation for Economic Co-Operation and Development , Reproducibility of Results , Animal Testing Alternatives/methods , Animal Testing Alternatives/standards , A549 Cells , Toxicity Tests/methods
2.
Chem Res Toxicol ; 34(4): 1175-1182, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33759508

ABSTRACT

Discussions are ongoing on which dose metric should be used for quantitative in vitro-to-in vivo extrapolation (QIVIVE) of in vitro bioassay data. The nominal concentration of the test chemicals is most commonly used and easily accessible, while the concentration freely dissolved in the assay medium is considered to better reflect the bioavailable concentration but is tedious to measure. The aim of this study was to elucidate how much QIVIVE results will differ when using either nominal or freely dissolved concentrations. QIVIVEnom and QIVIVEfree ratios, that is, the ratios of plasma concentrations divided by in vitro effect concentrations, were calculated for 10 pharmaceuticals using previously published nominal and freely dissolved effect concentrations for the activation of the peroxisome proliferator-activated receptor gamma (PPARγ) and the activation of oxidative stress response. The QIVIVEnom ratios were higher than QIVIVEfree ratios by up to a factor of 60. The risk of in vivo effects was classified as being high or low for four chemicals using the QIVIVEnom and for three chemicals using QIVIVEfree ratios. Unambiguous classification was possible for nine chemicals by combining the QIVIVEnom or QIVIVEfree ratios with the respective specificity ratios (SRnom or SRfree) of the in vitro effect data, which helps to identify whether the specific effect was influenced by cytotoxicity. QIVIVEfree models should be preferred as they account for differences in bioavailability between in vitro and in vivo, but QIVIVEnom may still be useful for screening the effects of large numbers of chemicals because it is generally more conservative. The use of SR of the in vitro effect data as a second classification factor is recommended for QIVIVEnom and QIVIVEfree models because a clearer picture can be obtained with respect to the likelihood that a biological effect will occur and that it is not caused by nonspecific cytotoxicity.


Subject(s)
Biological Assay , Pharmaceutical Preparations/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...