Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-37259325

ABSTRACT

Depression, anxiety, and schizophrenia may coexist in psychiatric patients. Moreover, these disorders are very often associated with cognitive impairments. However, pharmacotherapy of these conditions remains challenging due to limited drug effectiveness or numerous side effects. Therefore, there is an urgent need to develop novel multimodal compounds that can be used to treat depression, anxiety, and schizophrenia, as well as memory deficits. Thus, this study aimed to evaluate the potential antidepressant-like, anxiolytic-like, antipsychotic-like effects, and anti-amnesic properties, of the novel arylpiperazine derivative of salicylamide, JJGW07, with an affinity towards serotonin 5-HT1A, 5-HT2A, and 5-HT7 and dopamine D2 receptors. Firstly, we investigated the compound's affinity for 5-HT6 receptors and its functional activity by using in vitro assays. JJGW07 did not bind to 5-HT6 receptors and showed antagonistic properties for 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors. Based on the receptor profile, we performed behavioral studies in mice to evaluate the antidepressant-like, anxiolytic-like, and antipsychotic-like activity of the tested compound using forced swim and tail suspension tests; four-plate, marble-burying, and elevated plus maze tests; and MK-801- and amphetamine-induced hyperlocomotion tests, respectively. JJGW07 revealed antidepressant-like properties in the tail suspension test, anxiolytic-like effects in the four-plate and marble-burying tests, and antipsychotic-like activity in the MK-801-induced hyperlocomotion test. Importantly, the tested compound did not induce catalepsy and motor impairments or influence locomotor activity in rodents. Finally, to assess the potential procognitive and anti-amnesic properties of JJGW07, we used passive avoidance and object recognition tests in mice. JJGW07 demonstrated positive effects on long-term emotional memory and also ameliorated MK-801-induced emotional memory impairments in mice, but showed no procognitive properties in the case of recognition memory. Our results encourage the search for new compounds among salicylamide derivatives, which could be model structures with multitarget mechanisms of action that could be used in psychiatric disorder therapy.

2.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613736

ABSTRACT

Cardiovascular diseases remain one of the leading causes of death worldwide. Unfortunately, the available pharmacotherapeutic options have limited effectiveness. Therefore, developing new drug candidates remains very important. We selected six novel arylpiperazine alkyl derivatives of salicylamide to investigate their cardiovascular effects. Having in mind the beneficial role of α1-adrenergic receptors in restoring sinus rhythm and regulating blood pressure, first, using radioligand binding assays, we evaluated the affinity of the tested compounds for α-adrenergic receptors. Our experiments revealed their high to moderate affinity for α1- but not α2-adrenoceptors. Next, we aimed to determine the antiarrhythmic potential of novel derivatives in rat models of arrhythmia induced by adrenaline, calcium chloride, or aconitine. All compounds showed potent prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia model and no effects in calcium chloride- or aconitine-induced arrhythmias. Moreover, the tested compounds demonstrated therapeutic antiarrhythmic activity, restoring a normal sinus rhythm immediately after the administration of the arrhythmogen adrenaline. Notably, none of the tested derivatives affected the normal electrocardiogram (ECG) parameters in rodents, which excludes their proarrhythmic potential. Finally, all tested compounds decreased blood pressure in normotensive rats and reversed the pressor response to methoxamine, suggesting that their hypotensive mechanism of action is connected with the blockade of α1-adrenoceptors. Our results confirm the antiarrhythmic and hypotensive activities of novel arylpiperazine derivatives and encourage their further investigation as model structures for potential drugs.


Subject(s)
Aconitine , Antihypertensive Agents , Animals , Rats , Aconitine/toxicity , Adrenergic Antagonists , Anti-Arrhythmia Agents/therapeutic use , Antihypertensive Agents/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/prevention & control , Calcium Chloride , Epinephrine/pharmacology , Epinephrine/therapeutic use , Rats, Wistar , Receptors, Adrenergic, alpha , Receptors, Adrenergic, alpha-1/metabolism , Salicylamides
3.
Biol Trace Elem Res ; 196(2): 359-364, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31732929

ABSTRACT

Chromium(III) is one of the most controversial biometals. Although, it is no longer on the list of minerals necessary for the proper functioning of the human body, and its pharmacological effect is still under discussion. One of the purposes of Cr(III) administration is to use it in patients with mood disorders and it is strictly related to its pharmacological, not dietary effect. This is because its high doses are necessary to obtain the results and additionally, no deficiencies in human population have been noted. In this study, the affinity of chromium(III) to selected receptors and transporters in the rat brain was evaluated, and the effect of the 14-day administration of this metal was assessed on the density of selected receptors. All analyses were performed in vitro using radioligand binding assays, and the results indicated lack of affinity to ß1 and α1 receptors and serotonin transporter (SERT), furthermore very weak affinity to the 5-HT1A receptor (30% inhibition at 10-4 and 10-5 M). Analysis of the α1 and ß1 adrenergic receptor density indicated lack of any adaptive effects after 14 days of Cr(III) administration through intraperitoneal injections (doses 6 and 12 mg/kg). The antidepressant activity of chromium(III) indicated in clinical trials concerned patients with atypical, seasonal, or dystonic symptoms. This effect, as it seems based on the presented results, does not depend on direct affinity to serotonin receptors and transporter nor is the result of adaptive changes in the adrenoreceptor system.


Subject(s)
Brain/drug effects , Brain/metabolism , Chlorides/administration & dosage , Chlorides/pharmacology , Chromium Compounds/administration & dosage , Chromium Compounds/pharmacology , Receptors, Adrenergic, alpha-1/analysis , Receptors, Adrenergic, beta-1/analysis , Serotonin Plasma Membrane Transport Proteins/analysis , Animals , Chlorides/chemistry , Chromium Compounds/chemistry , Injections, Intraperitoneal , Male , Protein Transport , Rats , Rats, Wistar
4.
Biol Trace Elem Res ; 192(2): 91-97, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30715682

ABSTRACT

The polycystic ovary syndrome (PCOS) is the most frequent endocrinopathy in women in reproductive age with the so far undetermined causes of development. In the etiopathogenesis of PCOS, the role of insulin resistance is emphasised, which was an indication for the attempts at using chromium III salts (Cr) in augmenting pharmacotherapy applied in patients. The analysis of the usefulness and efficacy of this approach was the direct goal of this thesis. Animal tests confirmed the efficacy of chromium in maintaining the appropriate level of glycaemia and insulinaemia, normalisation of plasma concentrations of microelements and also a correlation between the Cr level, insulin and dehydroepiandrosterone (DHEA) was found. A decrease in the expression of 3ß-hydroxysteroid dehydrogenase and 17ß-hydroxysteroid dehydrogenase was identified in adipose tissue. Clinical studies, although sparse, show that the supplementation with chromium can improve BMI and the parameters evaluating the control of glycaemia and increase the chances for ovulation and regular menstruation. However, the small number and a variability in study protocols makes comparing them very difficult. A completely new subject that has not been yet studied is the possibility of using chromium in levelling mood disorders in patients with PCOS. Currently, there are still no sufficient proofs for introducing chromium as a standard in treating and preventing insulin resistance in patients with PCOS. However, this direction remains open, and treating insulin resistance is an important challenge in clinical practice.


Subject(s)
Chromium/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Animals , Chromium/administration & dosage , Female , Humans , Polycystic Ovary Syndrome/blood , Salts/administration & dosage , Salts/therapeutic use
5.
Eur J Med Chem ; 98: 221-36, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26043160

ABSTRACT

A series of novel 4-aryl-pyrido[1,2-c]pyrimidine derivatives containing a 1-(2-quinoline)piperazine moiety was synthesized. The chemical structure of new compounds was confirmed by FT-IR, (1)H NMR, (13)C NMR and HRMS spectra as well as elemental analysis. Affinity of the novel pyrido[1,2-c]pyrimidine derivatives for 5-HT1A, 5-HT2A receptors and serotonin transporter (SERT) was evaluated in an in vitro radioligand binding assay. Tested compounds showed moderate to high affinity for 5-HT1AR and SERT and low affinity for 5-HT2AR. Selected ligands were subjected to in vivo tests, such as induced hypothermia and the forced swimming test in mice, which determined presynaptic agonistic activity of the ligands 8d, 8e, 9d and 9e and presynaptic antagonistic activity of the ligands 8a, 8b, 9a, 9b. Additionally, metabolic stability evaluation was performed for selected ligands, proving that a para-substitution in the 4-aryl-pyrido[1,2-c]pyrimidine moiety leads to an increase in stability, whereas a substitution in the ortho-position lowers the stability.


Subject(s)
Pyrimidines/pharmacology , Receptor, Serotonin, 5-HT1A/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Male , Mice , Pyrimidines/chemistry , Radioligand Assay , Selective Serotonin Reuptake Inhibitors/chemistry
6.
Pharmacol Rep ; 67(3): 490-3, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25933959

ABSTRACT

BACKGROUND: The NMDA/glutamate receptors are involved in the mechanism of antidepressant activity. METHODS: The present study was designed to investigate the effect of NMDA receptor ligands (agonists and antagonists of glutamate sites) on the antidepressant-like activity of selective serotonin reuptake inhibitors (SSRIs), citalopram and fluoxetine, in the forced swim test in mice. RESULTS: The antidepressant activity (reduction in immobility time) of citalopram but not of fluoxetine was antagonized by N-methyl-D-aspartate acid and enhanced by CGP37849 (antagonist of the NMDA receptor). CONCLUSIONS: The present literature data indicate that the antidepressant-like activity of conventional antidepressants is generally affected by the NMDA receptor, although by modulation from different sites of the complex. Thus, it supports the issue of the ability of NMDA receptor antagonists to enhance the antidepressant action in human depression.


Subject(s)
Antidepressive Agents/therapeutic use , Citalopram/therapeutic use , Depression/drug therapy , Fluoxetine/therapeutic use , Receptors, N-Methyl-D-Aspartate/physiology , Swimming , 2-Amino-5-phosphonovalerate/analogs & derivatives , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Antidepressive Agents, Second-Generation/therapeutic use , Depression/psychology , Drug Evaluation, Preclinical/methods , Male , Mice , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Swimming/psychology
7.
J Chem Inf Model ; 54(3): 933-43, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24521202

ABSTRACT

The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an essential role in the termination of serotonergic neurotransmission by removing 5-HT from the synaptic cleft into the presynaptic neuron. It is also of pharmacological importance being targeted by antidepressants and psychostimulant drugs. Here, five commercial databases containing approximately 3.24 million drug-like compounds have been screened using a combination of two-dimensional (2D) fingerprint-based and three-dimensional (3D) pharmacophore-based screening and flexible docking into multiple conformations of the binding pocket detected in an outward-open SERT homology model. Following virtual screening (VS), selected compounds were evaluated using in vitro screening and full binding assays and an in silico hit-to-lead (H2L) screening was performed to obtain analogues of the identified compounds. Using this multistep VS/H2L approach, 74 active compounds, 46 of which had K(i) values of ≤1000 nM, belonging to 16 structural classes, have been identified, and multiple compounds share no structural resemblance with known SERT binders.


Subject(s)
Psychotropic Drugs/chemistry , Psychotropic Drugs/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Binding Sites , Databases, Pharmaceutical , Drug Discovery , Humans , Molecular Docking Simulation , Protein Binding , Serotonin Plasma Membrane Transport Proteins/chemistry
8.
Pharmacol Rep ; 65(4): 991-7, 2013.
Article in English | MEDLINE | ID: mdl-24145093

ABSTRACT

BACKGROUND: The involvement of glutamate system (particularly the NMDA and AMPA receptors) in the mechanism of antidepressant activity was demonstrated in preclinical and clinical studies. METHODS: In the present study, we investigated the effect of NMDA and AMPA receptors' ligands (agonists and antagonists) on the antidepressant-like activity of escitalopram, milnacipran, imipramine and reboxetine in the forced swim test in mice. RESULTS: Antidepressant activity (reduction in immobility time) of escitalopram and milnacipran but not of imipramine and reboxetine was antagonized by N-methyl-D-aspartate acid. CGP37849 (antagonist of the NMDA receptor) enhanced the antidepressant activity of all examined antidepressants. On the other hand, CX614 (a potentiator/positive allosteric modulator of the AMPA receptor) enhanced the antidepressant activity of imipramine and reboxetine but not of escitalopram and milnacipran in this test. NBQX (the AMPA receptor antagonist) did not influence the antidepressant activity of all tested agents. CONCLUSIONS: The data indicate the complex interactions following the activation or blockade of the NMDA and AMPA receptors with antidepressant drugs. The general phenomenon is the enhancing effect of the NMDA receptor antagonism on the antidepressant activity. Moreover, is can be concluded that the activity of antidepressants with a serotonergic mechanism of action can be inhibited by NMDA activation, while antidepressants with a noradrenergic mechanism of action are dependent on AMPA receptor transmission.


Subject(s)
Antidepressive Agents/pharmacology , Citalopram/pharmacology , Cyclopropanes/pharmacology , Immobility Response, Tonic/drug effects , Receptors, AMPA/agonists , Receptors, AMPA/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , 2-Amino-5-phosphonovalerate/analogs & derivatives , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Antidepressive Agents/agonists , Antidepressive Agents/antagonists & inhibitors , Citalopram/agonists , Citalopram/antagonists & inhibitors , Cyclopropanes/agonists , Cyclopropanes/antagonists & inhibitors , Imipramine/agonists , Imipramine/antagonists & inhibitors , Imipramine/pharmacology , Male , Mice , Milnacipran , Morpholines/agonists , Morpholines/antagonists & inhibitors , Morpholines/pharmacology , Motor Activity/drug effects , N-Methylaspartate/pharmacology , Oxazines/pharmacology , Quinoxalines/pharmacology , Reboxetine
9.
Chem Biol Drug Des ; 81(6): 695-706, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23574807

ABSTRACT

Twelve alkyl analogues (1-12) of the high-affinity serotonin transporter (SERT) inhibitor 6-nitroquipazine (6-NQ) were synthesized and studied using in vitro radioligand competition binding assays to determine their binding affinity (Ki ). The putative antidepressant activity of five of the binders with the highest SERT binding affinities was studied by the forced swim and locomotor activity mouse tests. The three-dimensional (3D) structures of 8 and 9 were determined using NOE NMR technique. Flexible docking of the compounds was undertaken to illustrate the binding of the compounds in the SERT model. Our results showed that several of the 6-NQ analogues are high-affinity SERT inhibitors and indicated that the octyl (8), decyl (10) and dodecyl (12) 6-NQ analogues exhibit moderate antidepressant activity.


Subject(s)
Antidepressive Agents/chemical synthesis , Quipazine/analogs & derivatives , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin Plasma Membrane Transport Proteins/chemistry , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Binding Sites , Male , Mice , Molecular Docking Simulation , Motor Activity/drug effects , Protein Binding , Protein Structure, Tertiary , Quipazine/chemical synthesis , Quipazine/chemistry , Quipazine/pharmacology , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology
10.
Eur J Med Chem ; 63: 484-500, 2013 May.
Article in English | MEDLINE | ID: mdl-23524160

ABSTRACT

A series of 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives was synthesized and their biological activity was evaluated. The chemical structures of the newly prepared compounds were confirmed by (1)H NMR, (13)C NMR and ESI-HRMS spectra data. All tested compounds proved to be potent 5-HT1A receptor and serotonin transporter protein (SERT) ligands. Among them, compounds 15, 18, 19 and 30 showed significant affinity for 5-HT1A and SERT. Computer docking simulations carried out for compounds 15, 31 and 32 to models of 5-HT1A receptor and SERT confirm the results of biological tests. Due to high affinity for the 5-HT1A receptor and moderate affinity for SERT, compounds 31, 32, 35, and 37 were evaluated for their affinity for D2L, 5-HT6, 5-HT7 and 5-HT2A receptors. In vivo tests, in turn, resulted in determining the functional activity of compounds 15, 18, 19 and 30 to the 5-HT1A receptor. The results of these tests indicate that all of the ligands possess properties characteristic of 5-HT1A receptor agonists.


Subject(s)
Antidepressive Agents/chemical synthesis , Pyrrolidines/chemical synthesis , Serotonin Agents/chemical synthesis , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Binding, Competitive , Body Temperature/drug effects , Brain/drug effects , Brain/metabolism , HEK293 Cells , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Ligands , Magnetic Resonance Spectroscopy , Male , Mice , Models, Chemical , Models, Molecular , Molecular Structure , Motor Activity/drug effects , Motor Activity/physiology , Protein Structure, Tertiary , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Radioligand Assay , Rats , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Agents/chemistry , Serotonin Agents/pharmacology , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Swimming/physiology
11.
Pharmacol Rep ; 65(6): 1558-71, 2013.
Article in English | MEDLINE | ID: mdl-24553004

ABSTRACT

Affective disorders are a medical condition with a complex biological pattern of etiology, involving genetic and epigenetic factors, along with different environmental stressors. Increasing numbers of studies indicate that induction of oxidative and nitrosative stress (O&NS) pathways, which is accompanied by immune-inflammatory response, might play an important role in the pathogenic mechanisms underlying many major psychiatric disorders, including depression and bipolar disorder. Reactive oxygen and nitrogen species have been shown to impair the brain function by modulating activity of principal neurotransmitter (e.g., glutamatergic) systems involved in the neurobiology of depression. Both preclinical and clinical studies revealed that depression is associated with altered levels of oxidative stress markers and typically reduced concentrations of several endogenous antioxidant compounds, such as glutathione, vitamin E, zinc and coenzyme Q10, or enzymes, including glutathione peroxidase, and with an impairment of the total antioxidant status. These oxidative stress parameters can be normalized by successful antidepressant therapy. On the other hand, some antioxidants (zinc, N-acetylcysteine, omega-3 free fatty acids) may exhibit antidepressant properties or enhance standard antidepressant therapy. These observations introduce new potential targets for the development of therapeutic interventions based on antioxidant compounds. The present paper reviews selected animal and human studies providing evidence that oxidative stress is implicated in the pathophysiology and treatment of depression and bipolar disorder.


Subject(s)
Biomarkers/metabolism , Mood Disorders/drug therapy , Mood Disorders/metabolism , Mood Disorders/physiopathology , Oxidative Stress/physiology , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Humans
12.
Pharmacol Rep ; 63(2): 537-43, 2011.
Article in English | MEDLINE | ID: mdl-21602609

ABSTRACT

Preclinical data indicate the antidepressant activity of zinc and the involvement of the brain-derived neurotrophic factor (BDNF) in this mechanism. The present study investigates the effect of chronic (16 days) combined treatment with zinc (15 mg/kg zinc hydroaspartate) and imipramine (5 mg/kg) in chronic unpredictable stress (CUS) on the BDNF mRNA level in the rat brain. Moreover, serum zinc concentrations were also assessed. CUS induced a significant reduction in the BDNF mRNA level in the hippocampus by 21% but had no effect in the frontal cortex. Repeated treatment with zinc induced a significant increase in the BDNF mRNA level in the hippocampus in the unstressed animals by 12% and as in the chronically stressed animals by 14%, compared to the appropriate controls. Imipramine treatment did not affect this factor. However, combined treatment of zinc and imipramine induced a 12% elevation of the BDNF mRNA level in the stressed but not in the unstressed rats. CUS induced a 19% reduction in the serum zinc concentration, whereas combined treatment of zinc and imipramine reduced this concentration by 24% in the unstressed and increased it (by 20%) in the stressed animals. These results indicate that: 1) CUS induces a reduction in the BDNF gene expression with a concomitant diminution of serum zinc concentration and 2) the CUS-induced reduction in the BDNF gene expression is antagonized by chronic treatment with zinc.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Imipramine/pharmacology , Stress, Psychological/drug therapy , Zinc/pharmacology , Animals , Antidepressive Agents, Tricyclic/pharmacology , Depression/drug therapy , Disease Models, Animal , Drug Therapy, Combination , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Male , RNA, Messenger/metabolism , Rats , Rats, Wistar , Zinc/blood
13.
Pharmacol Rep ; 63(6): 1539-46, 2011.
Article in English | MEDLINE | ID: mdl-22358102

ABSTRACT

Reductions in the number and size of neurons in the medial prefrontal cortex (mPFC) have been documented in many post-mortem studies of depressed patients and animals exposed to stress. Here, we examined the effect of chronic unpredictable stress (CUS) and chronic mild stress (CMS) on specific populations of neurons in the rat mPFC. Antibodies directed against parvalbumin (PV), calbindin D-28K (CB) and active caspase-3 have been used to quantify the numerical density of PV-immunoreactive (PV-ir), CB-ir and active caspase-3-ir cells, and to measure the relative optical density of neuropil. CUS decreased the density of CB-ir neurons and the optical density of CB-ir neuropil. In turn, CMS increased the densities of both CB-ir neurons and neuropil, while PV-ir neurons and PV-ir neuropil were not changed. The frequency distribution of neuronal surface areas was significantly different only for PV-ir neurons, and only between the control and CUS group. CMS reduced the density of active caspase-3-ir cells while CUS did not. We concluded that the mPFC reveals a different pattern of changes in neurons containing calcium binding proteins and active caspase-3 immunoreactivity in response to CUS and CMS.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Depression/metabolism , Prefrontal Cortex/chemistry , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Animals , Calcium-Binding Proteins/immunology , Depression/etiology , Depression/pathology , Disease Models, Animal , Immunohistochemistry , Male , Neurons/chemistry , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/pathology , Rats , Rats, Wistar , Stress, Psychological/complications , Stress, Psychological/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...