Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 4): 368-75, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21460455

ABSTRACT

The Joint Center for Structural Genomics (JCSG), one of four large-scale structure-determination centers funded by the US Protein Structure Initiative (PSI) through the National Institute for General Medical Sciences, has been operating an automated distributed structure-solution pipeline, Xsolve, for well over half a decade. During PSI-2, Xsolve solved, traced and partially refined 90% of the JCSG's nearly 770 MAD/SAD structures at an average resolution of about 2 Šwithout human intervention. Xsolve executes many well established publicly available crystallography software programs in parallel on a commodity Linux cluster, resulting in multiple traces for any given target. Additional software programs have been developed and integrated into Xsolve to further minimize human effort in structure refinement. Consensus-Modeler exploits complementarities in traces from Xsolve to compute a single optimal model for manual refinement. Xpleo is a powerful robotics-inspired algorithm to build missing fragments and qFit automatically identifies and fits alternate conformations.


Subject(s)
Crystallography, X-Ray/methods , Proteins/analysis , Software Design , Algorithms , Automation, Laboratory , Models, Molecular , Protein Structure, Tertiary , Proteins/chemistry
2.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1326-34, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944229

ABSTRACT

A novel aminoacyl-tRNA synthetase that contains an iron-sulfur cluster in the tRNA anticodon-binding region and efficiently charges tRNA with tryptophan has been found in Thermotoga maritima. The crystal structure of TmTrpRS (tryptophanyl-tRNA synthetase; TrpRS; EC 6.1.1.2) reveals an iron-sulfur [4Fe-4S] cluster bound to the tRNA anticodon-binding (TAB) domain and an L-tryptophan ligand in the active site. None of the other T. maritima aminoacyl-tRNA synthetases (AARSs) contain this [4Fe-4S] cluster-binding motif (C-x22-C-x6-C-x2-C). It is speculated that the iron-sulfur cluster contributes to the stability of TmTrpRS and could play a role in the recognition of the anticodon.


Subject(s)
Iron-Sulfur Proteins/chemistry , Thermotoga maritima/enzymology , Tryptophan-tRNA Ligase/chemistry , Amino Acid Sequence , Animals , Conserved Sequence , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
3.
Structure ; 17(2): 303-13, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19217401

ABSTRACT

The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Anabaena variabilis/chemistry , Anabaena variabilis/enzymology , Catalytic Domain , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/physiology , Endopeptidases/physiology , Models, Biological , Models, Molecular , Molecular Sequence Data , Nostoc/chemistry , Nostoc/enzymology , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Substrate Specificity , src Homology Domains
4.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 12): 1210-21, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19018097

ABSTRACT

Complete automation of the macromolecular crystallography experiment has been achieved at SSRL through the combination of robust mechanized experimental hardware and a flexible control system with an intuitive user interface. These highly reliable systems have enabled crystallography experiments to be carried out from the researchers' home institutions and other remote locations while retaining complete control over even the most challenging systems. A breakthrough component of the system, the Stanford Auto-Mounter (SAM), has enabled the efficient mounting of cryocooled samples without human intervention. Taking advantage of this automation, researchers have successfully screened more than 200 000 samples to select the crystals with the best diffraction quality for data collection as well as to determine optimal crystallization and cryocooling conditions. These systems, which have been deployed on all SSRL macromolecular crystallography beamlines and several beamlines worldwide, are used by more than 80 research groups in remote locations, establishing a new paradigm for macromolecular crystallography experimentation.


Subject(s)
Crystallography, X-Ray/methods , Data Collection , Multiprotein Complexes/chemistry , Robotics , Computer Communication Networks , Computer Systems , Crystallization , Crystallography, X-Ray/instrumentation , Electronic Data Processing , Multiprotein Complexes/analysis , User-Computer Interface
17.
Proteins ; 63(4): 1112-8, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16544291
SELECTION OF CITATIONS
SEARCH DETAIL
...