Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Arthropod Struct Dev ; 74: 101265, 2023 May.
Article in English | MEDLINE | ID: mdl-37167919

ABSTRACT

The previously published ultrastructure of Aegla spermatozoa contributed to the phylogenetics of this unique taxon. The present study describes the spermatozoa of two additional aeglids, Aegla parana and A. quilombola. The spermatozoa consist of two hemispheres of the approximate same size and a bilayered acrosomal vesicle; both characteristics of the genus Aegla. The similarity of spermatozoa ultrastructure observed between A. parana and A. quilombola and the endemic Australian anomuran, Lomis hirta (Lomidae) reflects a sister group relationship, even though both are from different regions of the world and different environments today. Aeglid spermatozoa share the same organization with Lomis including the two equal size hemispheres separated by a membrane also two layers in the acrosomal vesicle with the external layer being surrounded by another membrane. The number of spermatozoa microtubular arms is unclear in Aegla, however, they are present in both the nucleus and cytoplasm. This observation does not agree with the presence of spermatozoa arms only in the nucleus, as an exclusive character for Aegla, as proposed previously. The presence of lipid-droplets and peroxisomes was observed only in the spermatozoa of A. quilombola. The greatly reduced number of spermatozoa observed in all specimens analyzed raises concerns about the conservation of several threatened species. In addition, the absence of any spermatophores seems to be a characteristic of the Aeglidae to date.


Subject(s)
Anomura , Male , Animals , Brazil , Australia , Phylogeny , Spermatozoa
2.
Ambio ; 50(7): 1313-1324, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33543362

ABSTRACT

Plastics are dominant pollutants in freshwater ecosystems worldwide. Scientific studies that investigated the interaction between plastics and freshwater biodiversity are incipient, especially if compared to the marine realm. In this review, we provide a brief overview of plastic pollution in freshwater ecosystems around the world. We found evidence of plastic ingestion by 206 freshwater species, from invertebrates to mammals, in natural or semi-natural ecosystems. In addition, we reported other consequences of synthetic polymers in freshwater ecosystems-including, for instance, the entanglement of animals of different groups (e.g., birds). The problem of plastic pollution is complex and will need coordinated actions, such as recycling programs, correct disposal, stringent legislation, regular inspection, replacement of synthetic polymers with other materials, and ecological restoration. Current information indicates that the situation in freshwater ecosystems may be as detrimental as the pollution found in the ocean, although highly underappreciated.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Biodiversity , Ecosystem , Environmental Monitoring , Fresh Water , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL