Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Rev Immunol ; 23(2): 90-105, 2023 02.
Article in English | MEDLINE | ID: mdl-35637393

ABSTRACT

Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.


Subject(s)
Immunity, Innate , Neoplasms , Humans , Killer Cells, Natural , Neoplasms/therapy , T-Lymphocytes , Immunotherapy
2.
Med ; 3(10): 682-704.e8, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36007524

ABSTRACT

BACKGROUND: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS: Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS: CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS: CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING: This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.


Subject(s)
Lymphocytes, Tumor-Infiltrating , T-Lymphocytes , Adoptive Transfer , Animals , Cytokines/metabolism , Humans , Immunotherapy, Adoptive/methods , Mice
3.
Proc Natl Acad Sci U S A ; 119(22): e2200568119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35588144

ABSTRACT

Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)­deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Histocompatibility Antigens Class I , Immunotherapy , Interleukin-2 , Membrane Proteins , Neoplasms , Nucleotides, Cyclic , Oligodeoxyribonucleotides , Serum Albumin , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/genetics , Humans , Immunotherapy/methods , Interleukin-2/immunology , Killer Cells, Natural/immunology , Membrane Proteins/agonists , Mice , Neoplasms/genetics , Neoplasms/therapy , Nucleotides, Cyclic/therapeutic use , Oligodeoxyribonucleotides/therapeutic use , Serum Albumin/therapeutic use
4.
Elife ; 112022 05 26.
Article in English | MEDLINE | ID: mdl-35617021

ABSTRACT

Mitotically stable random monoallelic gene expression (RME) is documented for a small percentage of autosomal genes. We developed an in vivo genetic model to study the role of enhancers in RME using high-resolution single-cell analysis of natural killer (NK) cell receptor gene expression and enhancer deletions in the mouse germline. Enhancers of the RME NK receptor genes were accessible and enriched in H3K27ac on silent and active alleles alike in cells sorted according to allelic expression status, suggesting enhancer activation and gene expression status can be decoupled. In genes with multiple enhancers, enhancer deletion reduced gene expression frequency, in one instance converting the universally expressed gene encoding NKG2D into an RME gene, recapitulating all aspects of natural RME including mitotic stability of both the active and silent states. The results support the binary model of enhancer action, and suggest that RME is a consequence of general properties of gene regulation by enhancers rather than an RME-specific epigenetic program. Therefore, many and perhaps all genes may be subject to some degree of RME. Surprisingly, this was borne out by analysis of several genes that define different major hematopoietic lineages, that were previously thought to be universally expressed within those lineages: the genes encoding NKG2D, CD45, CD8α, and Thy-1. We propose that intrinsically probabilistic gene allele regulation is a general property of enhancer-controlled gene expression, with previously documented RME representing an extreme on a broad continuum.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Regulatory Sequences, Nucleic Acid , Alleles , Animals , Chromosomes , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Mice
5.
Dev Cell ; 56(19): 2712-2721.e4, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34496290

ABSTRACT

Cancer patients often die from symptoms that manifest at a distance from any tumor. Mechanisms underlying these systemic physiological perturbations, called paraneoplastic syndromes, may benefit from investigation in non-mammalian systems. Using a non-metastatic Drosophila adult model, we find that malignant-tumor-produced cytokines drive widespread host activation of JAK-STAT signaling and cause premature lethality. STAT activity is particularly high in cells of the blood-brain barrier (BBB), where it induces aberrant BBB permeability. Remarkably, inhibiting STAT in the BBB not only rescues barrier function but also extends the lifespan of tumor-bearing hosts. We identify BBB damage in other pathological conditions that cause elevated inflammatory signaling, including obesity and infection, where BBB permeability also regulates host survival. IL-6-dependent BBB dysfunction is further seen in a mouse tumor model, and it again promotes host morbidity. Therefore, BBB alterations constitute a conserved lethal tumor-host interaction that also underlies other physiological morbidities.


Subject(s)
Blood-Brain Barrier/physiology , Paraneoplastic Syndromes/physiopathology , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Cells, Cultured , Cytokines , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Endothelial Cells/metabolism , Interleukin-6/immunology , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Permeability , STAT Transcription Factors/metabolism , Signal Transduction/physiology
6.
Cancers (Basel) ; 13(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808166

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, genomically complex, have soft tissue sarcomas, and are derived from the Schwann cell lineage. Patients with neurofibromatosis type 1 syndrome (NF1), an autosomal dominant tumor predisposition syndrome, are at a high risk for MPNSTs, which usually develop from pre-existing benign Schwann cell tumors called plexiform neurofibromas. NF1 is characterized by loss-of-function mutations in the NF1 gene, which encode neurofibromin, a Ras GTPase activating protein (GAP) and negative regulator of RasGTP-dependent signaling. In addition to bi-allelic loss of NF1, other known tumor suppressor genes include TP53, CDKN2A, SUZ12, and EED, all of which are often inactivated in the process of MPNST growth. A sleeping beauty (SB) transposon-based genetic screen for high-grade Schwann cell tumors in mice, and comparative genomics, implicated Wnt/ß-catenin, PI3K-AKT-mTOR, and other pathways in MPNST development and progression. We endeavored to more systematically test genes and pathways implicated by our SB screen in mice, i.e., in a human immortalized Schwann cell-based model and a human MPNST cell line, using CRISPR/Cas9 technology. We individually induced loss-of-function mutations in 103 tumor suppressor genes (TSG) and oncogene candidates. We assessed anchorage-independent growth, transwell migration, and for a subset of genes, tumor formation in vivo. When tested in a loss-of-function fashion, about 60% of all TSG candidates resulted in the transformation of immortalized human Schwann cells, whereas 30% of oncogene candidates resulted in growth arrest in a MPNST cell line. Individual loss-of-function mutations in the TAOK1, GDI2, NF1, and APC genes resulted in transformation of immortalized human Schwann cells and tumor formation in a xenograft model. Moreover, the loss of all four of these genes resulted in activation of Hippo/Yes Activated Protein (YAP) signaling. By combining SB transposon mutagenesis and CRISPR/Cas9 screening, we established a useful pipeline for the validation of MPNST pathways and genes. Our results suggest that the functional genetic landscape of human MPNST is complex and implicate the Hippo/YAP pathway in the transformation of neurofibromas. It is thus imperative to functionally validate individual cancer genes and pathways using human cell-based models, to determinate their role in different stages of MPNST development, growth, and/or metastasis.

7.
Science ; 364(6446): 1179-1184, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31221858

ABSTRACT

Intestinal adaptive immune responses influence host health, yet only a few intestinal bacteria species that induce cognate adaptive immune responses during homeostasis have been identified. Here, we show that Akkermansia muciniphila, an intestinal bacterium associated with systemic effects on host metabolism and PD-1 checkpoint immunotherapy, induces immunoglobulin G1 (IgG1) antibodies and antigen-specific T cell responses in mice. Unlike previously characterized mucosal responses, T cell responses to A. muciniphila are limited to T follicular helper cells in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria. However, A. muciniphila-specific responses are context dependent and adopt other fates in conventional mice. These findings suggest that, during homeostasis, contextual signals influence T cell responses to the microbiota and modulate host immune function.


Subject(s)
Adaptive Immunity , Gastrointestinal Microbiome/immunology , Homeostasis , Intestines/immunology , Verrucomicrobia/immunology , Animals , Cell Movement/immunology , Female , Germ-Free Life , Immunity, Mucosal , Immunoglobulin G/immunology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology
8.
Mol Cancer Res ; 17(2): 567-582, 2019 02.
Article in English | MEDLINE | ID: mdl-30355676

ABSTRACT

Follicular lymphoma and diffuse large B-cell lymphoma (DLBCL) are the most common non-Hodgkin lymphomas distinguishable by unique mutations, chromosomal rearrangements, and gene expression patterns. Here, it is demonstrated that early B-cell progenitors express 2',3'-cyclic-nucleotide 3' phosphodiesterase (CNP) and that when targeted with Sleeping Beauty (SB) mutagenesis, Trp53R270H mutation or Pten loss gave rise to highly penetrant lymphoid diseases, predominantly follicular lymphoma and DLBCL. In efforts to identify the genetic drivers and signaling pathways that are functionally important in lymphomagenesis, SB transposon insertions were analyzed from splenomegaly specimens of SB-mutagenized mice (n = 23) and SB-mutagenized mice on a Trp53R270H background (n = 7) and identified 48 and 12 sites with statistically recurrent transposon insertion events, respectively. Comparison with human data sets revealed novel and known driver genes for B-cell development, disease, and signaling pathways: PI3K-AKT-mTOR, MAPK, NFκB, and B-cell receptor (BCR). Finally, functional data indicate that modulating Ras-responsive element-binding protein 1 (RREB1) expression in human DLBCL cell lines in vitro alters KRAS expression, signaling, and proliferation; thus, suggesting that this proto-oncogene is a common mechanism of RAS/MAPK hyperactivation in human DLBCL. IMPLICATIONS: A forward genetic screen identified new genetic drivers of human B-cell lymphoma and uncovered a RAS/MAPK-activating mechanism not previously appreciated in human lymphoid disease. Overall, these data support targeting the RAS/MAPK pathway as a viable therapeutic target in a subset of human patients with DLBCL.


Subject(s)
DNA-Binding Proteins/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Transcription Factors/genetics , Animals , Cell Line, Tumor , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , MAP Kinase Signaling System , Mice , Mice, Transgenic , Mutagenesis, Insertional , Mutation , Proto-Oncogene Mas
9.
PLoS One ; 13(9): e0198714, 2018.
Article in English | MEDLINE | ID: mdl-30222773

ABSTRACT

The CRISPR/Cas9 system is an RNA guided nuclease system that evolved as a mechanism of adaptive immunity in bacteria. This system has been adopted for numerous genome engineering applications in research and recently, therapeutics. The CRISPR/Cas9 system has been largely implemented by delivery of Cas9 as protein, RNA, or plasmid along with a chimeric crRNA-tracrRNA guide RNA (gRNA) under the expression of a pol III promoter, such as U6. Using this approach, multiplex genome engineering has been achieved by delivering several U6-gRNA plasmids targeting multiple loci. However, this approach is limited due to the efficiently of delivering multiple plasmids to a single cell at one time. To augment the capability and accessibility of multiplexed genome engineering, we developed an efficient golden gate based method to assemble gRNAs linked by optimal Csy4 ribonuclease sequences to deliver up to 10 gRNAs as a single gRNA array transcript. Here we report the optimal expression of our guide RNA array under a strong pol II promoter. This system can be implemented alongside the myriad of CRISPR applications, allowing users to model complex biological processes requiring numerous gRNAs.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , HEK293 Cells , Humans , Microarray Analysis , Plasmids/genetics , Promoter Regions, Genetic
10.
Cancer Res ; 78(2): 326-337, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29066513

ABSTRACT

Overall survival of patients with osteosarcoma (OS) has improved little in the past three decades, and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of intertumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and to improve therapy. In this study, transcriptional profiles of OS tumors and cell lines derived from humans (n = 49), mice (n = 103), and dogs (n = 34) were generated using RNA sequencing. Conserved intertumor transcriptional variation was present in tumor sets from all three species and comprised gene clusters associated with cell cycle and mitosis and with the presence or absence of immune cells. Further, we developed a novel gene cluster expression summary score (GCESS) to quantify intertumor transcriptional variation and demonstrated that these GCESS values associated with patient outcome. Human OS tumors with GCESS values suggesting decreased immune cell presence were associated with metastasis and poor survival. We validated these results in an independent human OS tumor cohort and in 15 different tumor data sets obtained from The Cancer Genome Atlas. Our results suggest that quantification of immune cell absence and tumor cell proliferation may better inform therapeutic decisions and improve overall survival for OS patients.Significance: This study offers new tools to quantify tumor heterogeneity in osteosarcoma, identifying potentially useful prognostic biomarkers for metastatic progression and survival in patients. Cancer Res; 78(2); 326-37. ©2017 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/mortality , Gene Expression Regulation, Neoplastic , Immunity, Cellular/genetics , Osteosarcoma/mortality , Transcriptome , Animals , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Case-Control Studies , Dogs , Gene Expression Profiling , Humans , Mice , Neoplasm Metastasis , Osteosarcoma/genetics , Osteosarcoma/secondary , Prognosis , Survival Rate
11.
Genome Res ; 26(1): 119-29, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26553456

ABSTRACT

Forward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc. Surprisingly, the majority (∼80%) of LM-PCR identified junction fragments do not lead to observable changes in RNA transcripts. However, in CIS regions, direct transcriptional effects of transposon insertions are observed. We developed an automated method to systematically identify T2/Onc-genome RNA fusion sequences in RNA-seq data. RNA fusion-based CISs were identified corresponding to both DNA-based CISs (Cdkn2a, Mycl1, Nf2, Pten, Sema6d, and Rere) and additional regions strongly associated with cancer that were not observed by LM-PCR (Myc, Akt1, Pth, Csf1r, Fgfr2, Wisp1, Map3k5, and Map4k3). In addition to calculating recurrent CISs, we also present complementary methods to identify potential driver events via determination of strongly supported fusions and fusions with large transcript level changes in the absence of multitumor recurrence. These methods independently identify CIS regions and also point to cancer-associated genes like Braf. We anticipate RNA-seq analyses of tumors from forward genetic screens will become an efficient tool to identify causal events.


Subject(s)
DNA Transposable Elements , Early Detection of Cancer/methods , Gene Fusion , Neoplasms/diagnosis , Neoplasms/genetics , Sequence Analysis, RNA , Chromosome Mapping , Databases, Genetic , Genetic Testing/methods , Humans , Mutagenesis, Insertional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
13.
Cancer Discov ; 5(9): 920-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26084801

ABSTRACT

UNLABELLED: Metastasis is the leading cause of death in patients with osteosarcoma, the most common pediatric bone malignancy. We conducted a multistage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified an SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P = 1.2 × 10(-9); OR, 2.43; 95% confidence interval, 1.83-3.24). The risk allele was significantly associated with lowered NFIB expression, which led to increased osteosarcoma cell migration, proliferation, and colony formation. In addition, a transposon screen in mice identified a significant proportion of osteosarcomas harboring inactivating insertions in Nfib and with lowered NFIB expression. These data suggest that germline genetic variation at rs7034162 is important in osteosarcoma metastasis and that NFIB is an osteosarcoma metastasis susceptibility gene. SIGNIFICANCE: Metastasis at diagnosis in osteosarcoma is the leading cause of death in these patients. Here we show data that are supportive for the NFIB locus as associated with metastatic potential in osteosarcoma.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/pathology , Genetic Variation , Genome-Wide Association Study , NFI Transcription Factors/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Alleles , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Chromosomes, Human, Pair 9 , DNA Transposable Elements , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genetic Linkage , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Mice , Mutagenesis, Insertional , Neoplasm Metastasis , Polymorphism, Single Nucleotide , Quantitative Trait Loci
14.
Nat Genet ; 47(6): 615-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961939

ABSTRACT

Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma.


Subject(s)
Bone Neoplasms/genetics , Osteosarcoma/genetics , Animals , Bone Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , DNA Transposable Elements , Dogs , Genetic Predisposition to Disease , Genomic Instability , Humans , Mice, Transgenic , Mutagenesis, Insertional , Osteosarcoma/secondary , PTEN Phosphohydrolase/genetics , Semaphorins/genetics , Semaphorins/metabolism , Tumor Suppressor Protein p53/genetics
15.
Nat Genet ; 45(7): 756-66, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23685747

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome neurofibromatosis type 1. To identify genetic drivers of MPNST development, we used the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of transformation-related protein p53 (Trp53) function and/or overexpression of human epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively. Comparison to human data sets identified new and known driver genes for MPNST formation at these sites. Pairwise co-occurrence analysis of CIS-associated genes identified many cooperating mutations that are enriched in Wnt/ß-catenin, PI3K-AKT-mTOR and growth factor receptor signaling pathways. Lastly, we identified several new proto-oncogenes, including Foxr2 (encoding forkhead box R2), which we functionally validated as a proto-oncogene involved in MPNST maintenance.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genes, Neoplasm , Genetic Testing/methods , Nerve Sheath Neoplasms/genetics , Animals , Cell Line, Tumor , DNA Mutational Analysis , DNA Transposable Elements/genetics , Genes, Neoplasm/physiology , Genetic Association Studies , Humans , Mice , Mice, Transgenic , Mutation/physiology , Neurofibroma/genetics , Proto-Oncogene Mas , Signal Transduction/genetics
16.
Nucleic Acids Res ; 41(8): e92, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23444141

ABSTRACT

Studying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system. Further, because RecWay assembly uses truly modular components, it allows for the generation of randomly assembled multigene vector libraries. These multigene vectors are integratable, and later excisable, using the highly efficient piggyBac (PB) DNA transposon system. Moreover, we have dramatically improved the expression of stably integrated multigene vectors by incorporation of insulator elements to prevent promoter interference seen with multigene vectors. We demonstrate that insulated multigene PB transposons can stably integrate and faithfully express up to five fluorescent proteins and the puromycin-thymidine kinase resistance gene in vitro, with up to 70-fold higher gene expression compared with analogous uninsulated vectors. RecWay assembly of multigene transposon vectors allows for widely applicable modelling of highly complex biological processes and can be easily performed by other research laboratories.


Subject(s)
DNA Transposable Elements , Genetic Vectors , Animals , Cells, Cultured , DNA, Complementary/metabolism , Gene Expression , Humans , Integrases/metabolism , Mice , Neoplasms, Experimental/genetics , RNA, Small Interfering/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...