Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Brain Behav Immun ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986723

ABSTRACT

Microglia are increasingly recognized to contribute to brain health and disease. Preclinical studies using laboratory rodents are essential to advance our understanding of the physiological and pathophysiological functions of these cells in the central nervous system. Rodents are nocturnal animals, and they are mostly maintained in a defined light-dark cycle within animal facilities, with many laboratories investigating microglial molecular and functional profiles during the animals' light (sleep) phase. However, only a few studies have considered possible differences in microglial functions between the active and sleep phases. Based on initial evidence suggesting that microglial intrinsic clock genes can affect their phenotypes, we sought to investigate differences in transcriptional, proteotype and functional profiles of microglia between light (sleep) and dark (active) phases, and how these changes are affected in pathological models. We found marked transcriptional and proteotype differences between microglia harvested from male mice during the light or dark phase. Amongst others, these differences related to genes and proteins associated with immune responses, motility, and phagocytosis, which were reflected by functional alterations in microglial synaptic pruning and response to bacterial stimuli. Possibly accounting for such changes, we found RNA and protein regulation in SWI/SNF and NuRD chromatin remodeling complexes between light and dark phases. Importantly, we also show that the time of microglial sample collection influences the nature of microglial transcriptomic changes in a model of immune-mediated neurodevelopmental disorders. Our findings emphasize the importance of considering diurnal factors in studying microglial cells and indicate that implementing a circadian perspective is pivotal for advancing our understanding of their physiological and pathophysiological roles in brain health and disease.

2.
J Vis Exp ; (207)2024 May 31.
Article in English | MEDLINE | ID: mdl-38884489

ABSTRACT

Microglia play a pivotal role in synaptic refinement in the brain. Analysis of microglial engulfment of synapses is essential for comprehending this process; however, currently available methods for identifying microglial engulfment of synapses, such as immunohistochemistry (IHC) and imaging, are laborious and time-intensive. To address this challenge, herein we present in vitro and in vivo* assays that allow fast and high-throughput quantification of microglial engulfment of synapses using flow cytometry. In the in vivo* approach, we performed intracellular vGLUT1 staining following fresh cell isolation from adult mouse brains to quantify engulfment of vGLUT1+ synapses by microglia. In the in vitro synaptosome engulfment assay, we used freshly isolated cells from the adult mouse brain to quantify the engulfment of pHrodo Red-labeled synaptosomes by microglia. These protocols together provide a time-efficient approach to quantifying microglial engulfment of synapses and represent promising alternatives to labor-intensive image analysis-based methods. By streamlining the analysis, these assays can contribute to a better understanding of the role of microglia in synaptic refinement in different disease models.


Subject(s)
Flow Cytometry , Microglia , Synapses , Animals , Microglia/cytology , Microglia/metabolism , Mice , Synapses/physiology , Synapses/chemistry , Flow Cytometry/methods , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 1/analysis , Synaptosomes/metabolism , Brain/cytology
3.
Brain Behav Immun ; 119: 465-481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552926

ABSTRACT

Microglia modulate synaptic refinement in the central nervous system (CNS). We have previously shown that a mouse model with innate high anxiety-related behavior (HAB) displays higher CD68+ microglia density in the key regions of anxiety circuits compared to mice with normal anxiety-related behavior (NAB) in males, and that minocycline treatment attenuated the enhanced anxiety of HAB male. Given that a higher prevalence of anxiety is widely reported in females compared to males, little is known concerning sex differences at the cellular level. Herein, we address this by analyzing microglia heterogeneity and function in the HAB and NAB brains of both sexes. Single-cell RNA sequencing revealed ten distinct microglia clusters varied by their frequency and gene expression profile. We report striking sex differences, especially in the major microglia clusters of HABs, indicating a higher expression of genes associated with phagocytosis and synaptic engulfment in the female compared to the male. On a functional level, we show that female HAB microglia engulfed a greater amount of hippocampal vGLUT1+ excitatory synapses compared to the male. We moreover show that female HAB microglia engulfed more synaptosomes compared to the male HAB in vitro. Due to previously reported effects of minocycline on microglia, we finally administered oral minocycline to HABs of both sexes and showed a significant reduction in the engulfment of synapses by female HAB microglia. In parallel to our microglia-specific findings, we further showed an anxiolytic effect of minocycline on female HABs, which is complementary to our previous findings in the male HABs. Our study, therefore, identifies the altered function of synaptic engulfment by microglia as a potential avenue to target and resolve microglia heterogeneity in mice with innate high anxiety.


Subject(s)
Anxiety , Microglia , Minocycline , Sex Characteristics , Animals , Minocycline/pharmacology , Microglia/metabolism , Microglia/drug effects , Female , Anxiety/metabolism , Anxiety/drug therapy , Male , Mice , Brain/metabolism , Brain/drug effects , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/drug effects , Disease Models, Animal , Synapses/drug effects , Synapses/metabolism , Phagocytosis/drug effects
4.
Front Immunol ; 14: 1143870, 2023.
Article in English | MEDLINE | ID: mdl-37006290

ABSTRACT

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Retrospective Studies , Viral Envelope Proteins , Immunization, Passive , Antibodies, Blocking
5.
Brain Behav Immun ; 111: 61-75, 2023 07.
Article in English | MEDLINE | ID: mdl-37001827

ABSTRACT

Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.


Subject(s)
Autism Spectrum Disorder , Male , Female , Animals , Mice , Autism Spectrum Disorder/genetics , Microglia , Mice, Knockout , Proteomics , Neurons/physiology
6.
PLoS One ; 18(2): e0278325, 2023.
Article in English | MEDLINE | ID: mdl-36745631

ABSTRACT

Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia. We identified a compound (C1) which significantly reduced NO release in a dose-dependent manner, with a low IC50 (252 nM) and no toxic side effects in vitro or in vivo. Target finding strategies such as in silico modelling and mass spectroscopy hint towards a direct interaction between C1 and the nitric oxide synthase making C1 a great candidate for specific intra-cellular interaction with the NO producing machinery.


Subject(s)
Microglia , Nitric Oxide , Infant, Newborn , Humans , Microglia/metabolism , Nitric Oxide/metabolism , Neuroinflammatory Diseases , Nitric Oxide Synthase Type II/metabolism , Cell Line , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism
7.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361832

ABSTRACT

Neuroinflammation is discussed to play a role in specific subgroups of different psychiatric disorders, including anxiety disorders. We have previously shown that a mouse model of trait anxiety (HAB) displays enhanced microglial density and phagocytic activity in key regions of anxiety circuits compared to normal-anxiety controls (NAB). Using minocycline, we provided causal evidence that reducing microglial activation within the dentate gyrus (DG) attenuated enhanced anxiety in HABs. Besides pharmacological intervention, "positive environmental stimuli", which have the advantage of exerting no side-effects, have been shown to modulate inflammation-related markers in human beings. Therefore, we now investigated whether environmental enrichment (EE) would be sufficient to modulate upregulated neuroinflammation in high-anxiety HABs. We show for the first time that EE can indeed attenuate enhanced trait anxiety, even when presented as late as adulthood. We further found that EE-induced anxiolysis was associated with the attenuation of enhanced microglial density (using Iba-1 as the marker) in the DG and medial prefrontal cortex. Additionally, EE reduced Iba1 + CD68+ microglia density within the anterior DG. Hence, the successful attenuation of trait anxiety by EE was associated in part with the normalization of neuro-inflammatory imbalances. These results suggest that pharmacological and/or positive behavioral therapies triggering microglia-targeted anti-inflammatory effects could be promising as novel alternatives or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals predisposed to trait anxiety.


Subject(s)
Anxiety , Microglia , Animals , Mice , Humans , Adult , Anxiety/drug therapy , Anxiety Disorders , Disease Models, Animal , Minocycline/pharmacology , Minocycline/therapeutic use , Hippocampus
8.
Bone Marrow Transplant ; 57(5): 712-720, 2022 05.
Article in English | MEDLINE | ID: mdl-35177828

ABSTRACT

Human cytomegalovirus (HCMV) reactivation remains a relevant complication after hematopoietic stem cell transplantation (HSCT) despite the great progress made in prophylaxis and treatment. Adaptive Natural Killer (NK) cells undergo a persistent reconfiguration in response to HCMV reactivation however, the exact role of adaptive NK cells in HCMV surveillance is currently unknown. We studied the relationship between HCMV reactivation and adaptive NK cells in 70 patients monitored weekly until day +100 after HSCT. Absolute cell counts of adaptive NK cells increased significantly after resolution of HCMV-reactivation compared to patients without reactivation. Patients with HCMV-reactivation had an early reconstitution of adaptive NK cells ("Responders") and had mainly a single reactivation (75% Responders vs 48% Non-Responders). Adaptive NK cells eliminated HCMV-infected human foreskin fibroblasts (HFF) in vitro and recruited T cells in an in vitro transwell migration assay. An extensive cytokine/chemokine panel demonstrated strongly increased secretion of CXCL10/IP-10, IFN-α, IL-1α, IL-1ß, IL-5, IL-7 and CCL4. Thus, adaptive NK cells may control viral spread and T cell expansion and survival during HCMV-reactivation. Taken together, we have demonstrated the potential of adaptive NK cells in the control of HCMV reactivation both by direct cytotoxicity and by recruitment of other immune cells.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Cytomegalovirus , Humans , Killer Cells, Natural , T-Lymphocytes
9.
Development ; 148(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34557899

ABSTRACT

The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.


Subject(s)
Brain Injuries/metabolism , GABAergic Neurons/metabolism , Hyperoxia/metabolism , Interneurons/metabolism , Parvalbumins/metabolism , Premature Birth/metabolism , Rodentia/metabolism , Animals , Cell Line , Cognition/physiology , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligodendroglia/metabolism , Social Behavior
10.
Life (Basel) ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499180

ABSTRACT

Retinopathy of prematurity (ROP), the most common cause of childhood blindness, is a hypoxia-induced eye disease characterized by retinal neovascularization. In the normal retina, a well-organized vascular network provides oxygen and nutrients as energy sources to maintain a normal visual function; however, it is disrupted when pathological angiogenesis is induced in ROP patients. Under hypoxia, inadequate oxygen and energy supply lead to oxidative stress and stimulate neovasculature formation as well as affecting the function of photoreceptors. In order to meet the metabolic needs in the developing retina, protection against abnormal vascular formation is one way to manage ROP. Although current treatments provide beneficial effects in reducing the severity of ROP, these invasive therapies may also induce life-long consequences such as systemic structural and functional complications as well as neurodevelopment disruption in the developing infants. Nutritional supplements for the newborns are a novel concept for restoring energy supply by protecting the retinal vasculature and may lead to better ROP management. Nutraceuticals are provided in a non-invasive manner without the developmental side effects associated with current treatments. These nutraceuticals have been investigated through various in vitro and in vivo methods and are indicated to protect retinal vasculature. Here, we reviewed and discussed how the use of these nutraceuticals may be beneficial in ROP prevention and management.

11.
Brain Behav Immun ; 91: 89-104, 2021 01.
Article in English | MEDLINE | ID: mdl-32927021

ABSTRACT

Microglia are the immune cells of the brain and become activated during any type of brain injury. In the middle cerebral artery occlusion (MCAo) model, a mouse model for ischemic stroke, we have previously shown that microglia and invaded monocytes upregulate the expression of the muscarinic acetylcholine receptor 3 (M3R) in the ischemic lesion. Here we tested whether this upregulation has an impact on the pathogenesis of MCAo. We depleted the m3R receptor in microglia, but not in circulating monocytes by giving tamoxifen to CX3CR1-CreERT+/+M3Rflox/flox (M3RKOmi) animals 3 weeks prior to MCAo. We found that M3RKOmi male mice had bigger lesions, more pronounced motor deficits after one week and cognitive deficits after about one month compared to control males. The density of Iba1+ cells was lower in the lesions of M3RKO male mice in the early, but not in the late disease phase. In females, these differences were not significant. By giving tamoxifen 1 week prior to MCAo, we depleted m3R in microglia and in circulating monocytes (M3RKOmi/mo). Male M3RKOmi/mo did not differ in lesion size, but had a lower survival rate, showed motor deficits and a reduced accumulation of Iba1+ positive cells into the lesion site. In conclusion, our data suggest that the upregulation of m3R in microglia and monocytes in stroke has a beneficial effect on the clinical outcome in male mice.


Subject(s)
Brain Ischemia , Microglia , Receptor, Muscarinic M3/genetics , Stroke , Animals , Brain , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery , Male , Mice , Mice, Inbred C57BL
12.
Transl Psychiatry ; 10(1): 256, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732969

ABSTRACT

High trait anxiety is a substantial risk factor for developing anxiety disorders and depression. While neuroinflammation has been identified to contribute to stress-induced anxiety, little is known about potential dysregulation in the neuroinflammatory system of genetically determined pathological anxiety or high trait anxiety individuals. We report microglial alterations in various brain regions in a mouse model of high trait anxiety (HAB). In particular, the dentate gyrus (DG) of the hippocampus of HABs exhibited enhanced density and average cell area of Iba1+, and density of phagocytic (CD68+/Iba1+) microglia compared to normal anxiety (NAB) controls. Minocycline was used to assess the capacity of a putative microglia 'inhibitor' in modulating hyperanxiety behavior of HABs. Chronic oral minocycline indeed reduced HAB hyperanxiety, which was associated with significant decreases in Iba1+ and CD68+Iba1+ cell densities in the DG. Addressing causality, it was demonstrated that longer (10 days), but not shorter (5 days), periods of minocycline microinfusions locally into the DG of HAB reduced Iba-1+ cell density and attenuated hyperanxiety-related behavior, indicating that neuroinflammation in the DG is at least partially involved in the maintenance of pathological anxiety. The present data reveal evidence of disturbances in the microglial system of individuals with high trait anxiety. Minocycline attenuated HAB hyperanxiety, likely by modulation of microglial activity within the DG. Thus, the present data suggest that drugs with microglia-targeted anti-inflammatory properties could be promising as novel alternative or complimentary anxiolytic therapeutic approaches in specific subgroups of individuals genetically predisposed to hyperanxiety.


Subject(s)
Anti-Anxiety Agents , Minocycline , Animals , Anxiety/drug therapy , Anxiety Disorders/drug therapy , Mice , Microglia , Minocycline/pharmacology
13.
J Neurosci ; 40(17): 3320-3331, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32060170

ABSTRACT

Microglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide and has been shown to signal via C3aR1 and C1qBP receptors. The effect of TLQP21 on microglial functions in health or disease is not known. Studying microglial cells in acute brain slices, we found that TLQP21 impaired metabotropic purinergic signaling. Specifically, it attenuated the ATP-induced activation of a K+ conductance, the UDP-stimulated phagocytic activity, and the ATP-dependent laser lesion-induced process outgrowth. These impairments were reversed by blocking C1qBP, but not C3aR1 receptors. While microglia in brain slices from male mice lack C3aR1 receptors, both receptors are expressed in primary cultured microglia. In addition to the negative impact on purinergic signaling, we found stimulating effects of TLQP21 in cultured microglia, which were mediated by C3aR1 receptors: it directly evoked membrane currents, stimulated basal phagocytic activity, evoked intracellular Ca2+ transient elevations, and served as a chemotactic signal. We conclude that TLQP21 has differential effects on microglia depending on C3aR1 activation or C1qBP-dependent attenuation of purinergic signaling. Thus, TLQP21 can modulate the functional phenotype of microglia, which may have an impact on their function in health and disease.SIGNIFICANCE STATEMENT The neuropeptide VGF and its peptides have been associated with many metabolic and neurological disorders. TLQP21 is a VGF-derived peptide that activates C1qBP receptors, which are expressed by microglia. We show here, for the first time, that TLQP21 impairs P2Y-mediated purinergic signaling and related functions. These include modulation of phagocytic activity and responses to injury. As purinergic signaling is central for microglial actions in the brain, this TLQP21-mediated mechanism might regulate microglial activity in health and disease. We furthermore show that, in addition to C1qBP, functional C3aR1 responses contribute to TLQP21 action on microglia. However, C3aR1 responses were only present in primary cultures but not in situ, suggesting that the expression of these receptors might vary between different microglial activation states.


Subject(s)
Chemotaxis/drug effects , Microglia/drug effects , Peptide Fragments/pharmacology , Phagocytosis/drug effects , Receptors, Purinergic/metabolism , Signal Transduction/drug effects , Animals , Brain/drug effects , Brain/metabolism , Calcium/metabolism , Cells, Cultured , Chemotaxis/physiology , Female , Male , Mice , Microglia/metabolism , Phagocytosis/physiology , Signal Transduction/physiology
14.
Cell Rep ; 29(11): 3460-3471.e7, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31825829

ABSTRACT

Microglia express Toll-like receptors (TLRs) that sense pathogen- and host-derived factors, including single-stranded RNA. In the brain, let-7 microRNA (miRNA) family members are abundantly expressed, and some have recently been shown to serve as TLR7 ligands. We investigated whether let-7 miRNA family members differentially control microglia biology in health and disease. We found that a subset of let-7 miRNA family members function as signaling molecules to induce microglial release of inflammatory cytokines, modulate antigen presentation, and attenuate cell migration in a TLR7-dependent manner. The capability of the let-7 miRNAs to control microglial function is sequence specific, mapping to a let-7 UUGU motif. In human and murine glioblastoma/glioma, let-7 miRNAs are differentially expressed and reduce murine GL261 glioma growth in the same sequence-specific fashion through microglial TLR7. Taken together, these data establish let-7 miRNAs as key TLR7 signaling activators that serve to regulate the diverse functions of microglia in health and glioma.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , MicroRNAs/metabolism , Microglia/metabolism , Toll-Like Receptor 7/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Signal Transduction , Toll-Like Receptor 7/metabolism
15.
Cell Rep ; 24(10): 2773-2783.e6, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30184509

ABSTRACT

Sex differences in brain structure and function are of substantial scientific interest because of sex-related susceptibility to psychiatric and neurological disorders. Neuroinflammation is a common denominator of many of these diseases, and thus microglia, as the brain's immunocompetent cells, have come into focus in sex-specific studies. Here, we show differences in the structure, function, and transcriptomic and proteomic profiles in microglia freshly isolated from male and female mouse brains. We show that male microglia are more frequent in specific brain areas, have a higher antigen-presenting capacity, and appear to have a higher potential to respond to stimuli such as ATP, reflected in higher baseline outward and inward currents and higher protein expression of purinergic receptors. Altogether, we provide a comprehensive resource to generate and validate hypotheses regarding brain sex differences.


Subject(s)
Brain/metabolism , Microglia/metabolism , Adenosine Triphosphate/metabolism , Animals , Female , Male , Mice , Proteomics/methods , Sex Characteristics , Transcriptome/genetics
16.
Exp Eye Res ; 166: 56-69, 2018 01.
Article in English | MEDLINE | ID: mdl-29042140

ABSTRACT

Anti-VEGF-directed therapies have been a milestone for treating retinal vascular diseases. Depletion of monocyte lineage cells suppresses pathological neovascularization in the oxygen-induced retinopathy mouse model. However, the question whether myeloid-derived VEGF-A expression is responsible for the pathogenesis in oxygen-induced retinopathy remained unknown. We analyzed LysMCre-driven myeloid cell-specific VEGF-A knockout mice as well as mice with complete depletion of circulating macrophages through clodronate-liposome treatment in the oxygen-induced retinopathy model by immunohistochemistry, qPCR, and flow cytometry. Furthermore, we analyzed VEGF-A mRNA expression in MIO-M1 cells alone and in co-culture with BV-2 cells in vitro. The myeloid cell-specific VEGF-A knockout did not change relative retinal VEGF-A mRNA levels, the relative avascular area or macrophage/granulocyte numbers in oxygen-induced retinopathy and under normoxic conditions. We observed an insignificantly attenuated pathology in systemically clodronate-liposome treated knockouts but evident VEGF-A expression in activated Müller cells on immunohistochemically stained sections. MIO-M1 cells had significantly higher expression levels of VEGF-A in co-culture with BV-2 cells compared to cultivating MIO-M1 cells alone. Our data show that myeloid-derived cells contribute to pathological neovascularization in oxygen-induced retinopathy through activation of VEGF-A expression in Müller cells.


Subject(s)
Ependymoglial Cells/metabolism , Hypoxia/metabolism , Myeloid Cells/metabolism , Retinal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Mice , Mice, Knockout , RNA, Messenger/metabolism
17.
Acta Neuropathol ; 135(4): 551-568, 2018 04.
Article in English | MEDLINE | ID: mdl-29249001

ABSTRACT

After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg-/- mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.


Subject(s)
Brain Ischemia/metabolism , Macrophages/metabolism , Microglia/metabolism , Stroke/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/pathology , Cations, Monovalent/metabolism , Disease Models, Animal , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Macrophages/pathology , Male , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Potentials/physiology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Potassium/metabolism , Stroke/pathology , Transplantation Chimera
18.
Data Brief ; 16: 489-500, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29255783

ABSTRACT

The dataset presented in this article complements the article entitled "Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells" (C. Nürnberg, N. Kociok, C. Brockmann, T. Lischke, S. Crespo-Garcia, N. Reichhart, S. Wolf, R. Baumgrass, S.A. Eming, S. Beer-Hammer, and A.M. Joussen). This complementary dataset provides further insight into the experimental validation of the VEGFfl/fl LysMCre (here named VEGFmcko) knockout model used in the main article through genomic and quantitative Real-Time PCR in various murine tissues as well as additional flow cytometry data and immunohistochemical stainings. By providing these data, we aim to enable researcher to reproduce and critically analyze our data.

19.
Nucleic Acids Res ; 45(17): 10259-10269, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-28973459

ABSTRACT

Functional impairment or complete loss of type VII collagen, caused by mutations within COL7A1, lead to the severe recessive form of the skin blistering disease dystrophic epidermolysis bullosa (RDEB). Here, we successfully demonstrate RNA trans-splicing as an auspicious repair option for mutations located in a wide range of exons by fully converting an RDEB phenotype in an ex vivo pre-clinical mouse model based on xenotransplantation. Via a self-inactivating (SIN) lentiviral vector a 3' RNA trans-splicing molecule, capable of replacing COL7A1 exons 65-118, was delivered into type VII collagen deficient patient keratinocytes, carrying a homozygous mutation in exon 80 (c.6527insC). Following vector integration, protein analysis of an isolated corrected single cell clone showed secretion of the corrected type VII collagen at similar levels compared to normal keratinocytes. To confirm full phenotypic and long-term correction in vivo, patches of skin equivalents expanded from the corrected cell clone were grafted onto immunodeficient mice. Immunolabelling of 12 weeks old skin specimens showed strong expression of human type VII collagen restricted to the basement membrane zone. We demonstrate that the RNA trans-splicing technology combined with a SIN lentiviral vector is suitable for an ex vivo molecular therapy approach and thus adaptable for clinical application.


Subject(s)
Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/therapy , Genetic Therapy/methods , Genetic Vectors/therapeutic use , RNA/therapeutic use , Trans-Splicing , Animals , Basement Membrane/metabolism , Cells, Cultured , Collagen Type VII/deficiency , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Heterografts , Humans , Keratinocytes/metabolism , Keratinocytes/transplantation , Lentivirus/genetics , Mice , Models, Animal , RNA/administration & dosage , RNA/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , Skin Transplantation , Transgenes
20.
Science ; 357(6357)2017 09 22.
Article in English | MEDLINE | ID: mdl-28798046

ABSTRACT

Hundreds of circular RNAs (circRNAs) are highly abundant in the mammalian brain, often with conserved expression. Here we show that the circRNA Cdr1as is massively bound by the microRNAs (miRNAs) miR-7 and miR-671 in human and mouse brains. When the Cdr1as locus was removed from the mouse genome, knockout animals displayed impaired sensorimotor gating-a deficit in the ability to filter out unnecessary information-which is associated with neuropsychiatric disorders. Electrophysiological recordings revealed dysfunctional synaptic transmission. Expression of miR-7 and miR-671 was specifically and posttranscriptionally misregulated in all brain regions analyzed. Expression of immediate early genes such as Fos, a direct miR-7 target, was enhanced in Cdr1as-deficient brains, providing a possible molecular link to the behavioral phenotype. Our data indicate an in vivo loss-of-function circRNA phenotype and suggest that interactions between Cdr1as and miRNAs are important for normal brain function.


Subject(s)
Brain/physiology , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/metabolism , RNA/metabolism , Animals , Behavior, Animal , Brain/metabolism , CRISPR-Cas Systems , Genetic Loci , Humans , Mice , Mice, Knockout , RNA Stability , RNA, Circular , RNA, Long Noncoding/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...