Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Crit Care Med ; 51(1): 91-102, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36519983

ABSTRACT

OBJECTIVES: Arterial diastolic blood pressure (DBP) greater than 25 mm Hg in infants and greater than 30 mm Hg in children greater than 1 year old during cardiopulmonary resuscitation (CPR) was associated with survival to hospital discharge in one prospective study. We sought to validate these potential hemodynamic targets in a larger multicenter cohort. DESIGN: Prospective observational study. SETTING: Eighteen PICUs in the ICU-RESUScitation prospective trial from October 2016 to March 2020. PATIENTS: Children less than or equal to 18 years old with CPR greater than 30 seconds and invasive blood pressure (BP) monitoring during CPR. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Invasive BP waveform data and Utstein-style CPR data were collected, including prearrest patient characteristics, intra-arrest interventions, and outcomes. Primary outcome was survival to hospital discharge, and secondary outcomes were return of spontaneous circulation (ROSC) and survival to hospital discharge with favorable neurologic outcome. Multivariable Poisson regression models with robust error estimates evaluated the association of DBP greater than 25 mm Hg in infants and greater than 30 mm Hg in older children with these outcomes. Among 1,129 children with inhospital cardiac arrests, 413 had evaluable DBP data. Overall, 85.5% of the patients attained thresholds of mean DBP greater than or equal to 25 mm Hg in infants and greater than or equal to 30 mm Hg in older children. Initial return of circulation occurred in 91.5% and 25% by placement on extracorporeal membrane oxygenator. Survival to hospital discharge occurred in 58.6%, and survival with favorable neurologic outcome in 55.4% (i.e. 94.6% of survivors had favorable neurologic outcomes). Mean DBP greater than 25 mm Hg for infants and greater than 30 mm Hg for older children was significantly associated with survival to discharge (adjusted relative risk [aRR], 1.32; 1.01-1.74; p = 0.03) and ROSC (aRR, 1.49; 1.12-1.97; p = 0.002) but did not reach significance for survival to hospital discharge with favorable neurologic outcome (aRR, 1.30; 0.98-1.72; p = 0.051). CONCLUSIONS: These validation data demonstrate that achieving mean DBP during CPR greater than 25 mm Hg for infants and greater than 30 mm Hg for older children is associated with higher rates of survival to hospital discharge, providing potential targets for DBP during CPR.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Infant , Child , Humans , Adolescent , Prospective Studies , Blood Pressure , Patient Discharge
2.
Pediatr Crit Care Med ; 23(11): 908-918, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36053072

ABSTRACT

OBJECTIVES: The COVID-19 pandemic resulted in adaptations to pediatric resuscitation systems of care. The objective of this study was to determine the temporal association between the pandemic and pediatric in-hospital cardiac arrest (IHCA) process of care metrics, cardiopulmonary resuscitation (cardiopulmonary resuscitation) quality, and patient outcomes. DESIGN: Multicenter retrospective analysis of a dataset comprising observations of IHCA outcomes pre pandemic (March 1, 2019 to February 29, 2020) versus pandemic (March 1, 2020 to February 28, 2021). SETTING: Data source was the ICU-RESUScitation Project ("ICU-RESUS;" NCT028374497), a prospective, multicenter, cluster randomized interventional trial. PATIENTS: Children (≤ 18 yr) who received cardiopulmonary resuscitation while admitted to the ICU and were enrolled in ICU-RESUS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 429 IHCAs meeting inclusion criteria, occurrence during the pandemic period was associated with higher frequency of hypotension as the immediate cause of arrest. Cardiac arrest physiology, cardiopulmonary resuscitation quality metrics, and postarrest physiologic and quality of care metrics were similar between the two periods. Survival with favorable neurologic outcome (Pediatric Cerebral Performance Category score 1-3 or unchanged from baseline) occurred in 102 of 195 subjects (52%) during the pandemic compared with 140 of 234 (60%) pre pandemic ( p = 0.12). Among survivors, occurrence of IHCA during the pandemic period was associated with a greater increase in Functional Status Scale (FSS) (i.e., worsening) from baseline (1 [0-3] vs 0 [0-2]; p = 0.01). After adjustment for confounders, IHCA survival during the pandemic period was associated with a greater increase in FSS from baseline (+1.19 [95% CI, 0.35-2.04] FSS points; p = 0.006) and higher odds of a new FSS-defined morbidity (adjusted odds ratio, 1.88 [95% CI, 1.03-3.46]; p = 0.04). CONCLUSIONS: Using the ICU-RESUS dataset, we found that relative to the year prior, pediatric IHCA during the first year of the COVID-19 pandemic was associated with greater worsening of functional status and higher odds of new functional morbidity among survivors.


Subject(s)
COVID-19 , Cardiopulmonary Resuscitation , Heart Arrest , Child , Humans , Pandemics , COVID-19/epidemiology , COVID-19/therapy , Retrospective Studies , Prospective Studies , Cardiopulmonary Resuscitation/methods , Heart Arrest/epidemiology , Heart Arrest/therapy
3.
Pediatr Crit Care Med ; 23(10): e451-e455, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35678459

ABSTRACT

OBJECTIVES: Pediatric Advanced Life Support (PALS) guidelines include weight-based epinephrine dosing recommendations of 0.01 mg/kg with a maximum of 1 mg, which corresponds to a weight of 100 kg. Actual practice patterns are unknown. DESIGN: Multicenter cross-sectional survey regarding institutional practices for the transition from weight-based to flat dosing of epinephrine during cardiopulmonary resuscitation in PICUs. Exploratory analyses compared epinephrine dosing practices with several institutional characteristics using Fisher exact test. SETTING: Internet-based survey. SUBJECTS: U.S. PICU representatives (one per institution) involved in resuscitation systems of care. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 137 institutions surveyed, 68 (50%) responded. Most responding institutions are freestanding children's hospitals or dedicated children's hospitals within combined adult/pediatric hospitals (67; 99%); 55 (81%) are academic and 41 (60%) have PICU fellowship programs. Among respondents, institutional roles include PICU medical director (13; 19%), resuscitation committee member (23; 34%), and attending physician with interest in resuscitation (21; 31%). When choosing between weight-based and flat dosing, 64 respondents (94%) report using patient weight, 23 (34%) patient age, and five (7%) patient pubertal stage. Among those reporting using weight, 28 (44%) switch at 50 to less than 60 kg, 17 (27%) at 60 to less than 80 kg, five (8%) at 80 to less than 100 kg, and eight (12%) at greater than or equal to 100 kg. Among those reporting using age, four (17%) switch at 14 to less than 16 years, five (22%) at 16 to less than 18, and six (26%) at greater than or equal to 18. Twenty-nine respondents (43%) report using ideal body weight when dosing epinephrine in obese patients. Using patient age in choosing epinephrine dosing is more common in institutions that require Advanced Cardiac Life Support (ACLS) certification for some/all code team responders compared with institutions that do not require ACLS certification (52% vs 22%; p = 0.02). CONCLUSIONS: The majority of PICUs surveyed report epinephrine dosing practices that are inconsistent with PALS guidelines.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Adolescent , Child , Cross-Sectional Studies , Epinephrine , Humans , Intensive Care Units, Pediatric , Surveys and Questionnaires
4.
Crit Care Explor ; 4(4): e0677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35392439

ABSTRACT

OBJECTIVES: Physiological decompensation of hospitalized patients is common and is associated with substantial morbidity and mortality. Research surrounding patient decompensation has been hampered by the absence of a robust definition of decompensation and lack of standardized clinical criteria with which to identify patients who have decompensated. We aimed to: 1) develop a consensus definition of physiological decompensation and 2) to develop clinical criteria to identify patients who have decompensated. DESIGN: We utilized a three-phase, modified electronic Delphi (eDelphi) process, followed by a discussion round to generate consensus on the definition of physiological decompensation and on criteria to identify decompensation. We then validated the criteria using a retrospective cohort study of adult patients admitted to the Hospital of the University of Pennsylvania. SETTING: Quaternary academic medical center. PATIENTS: Adult patients admitted to the Hospital of the University of Pennsylvania who had triggered a rapid response team (RRT) response between January 1, 2019, and December 31, 2020. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Sixty-nine experts participated in the eDelphi. Participation was high across the three survey rounds (first round: 93%, second round: 94%, and third round: 98%). The expert panel arrived at a consensus definition of physiological decompensation, "An acute worsening of a patient's clinical status that poses a substantial increase to an individual's short-term risk of death or serious harm." Consensus was also reached on criteria for physiological decompensation. Invasive mechanical ventilation, severe hypoxemia, and use of vasopressor or inotrope medication were bundled as criteria for our novel decompensation metric: the adult inpatient decompensation event (AIDE). Patients who met greater than one AIDE criteria within 24 hours of an RRT call had increased adjusted odds of 7-day mortality (adjusted odds ratio [aOR], 4.1 [95% CI, 2.5-6.7]) and intensive care unit transfer (aOR, 20.6 [95% CI, 14.2-30.0]). CONCLUSIONS: Through the eDelphi process, we have reached a consensus definition of physiological decompensation and proposed clinical criteria with which to identify patients who have decompensated using data easily available from the electronic medical record, the AIDE criteria.

5.
Pediatr Crit Care Med ; 21(9): e651-e660, 2020 09.
Article in English | MEDLINE | ID: mdl-32618677

ABSTRACT

OBJECTIVES: While most pediatric coronavirus disease 2019 cases are not life threatening, some children have severe disease requiring emergent resuscitative interventions. Resuscitation events present risks to healthcare provider safety and the potential for compromised patient care. Current resuscitation practices and policies for children with suspected/confirmed coronavirus disease 2019 are unknown. DESIGN: Multi-institutional survey regarding inpatient resuscitation practices during the coronavirus disease 2019 pandemic. SETTING: Internet-based survey. SUBJECTS: U.S. PICU representatives (one per institution) involved in resuscitation system planning and oversight. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of 130 institutions surveyed, 78 (60%) responded. Forty-eight centers (62%) had admitted coronavirus disease 2019 patients; 26 (33%) reported code team activation for patients with suspected/confirmed coronavirus disease 2019. Sixty-seven respondents (86%) implemented changes to inpatient emergency response systems. The most common changes were as follows: limited number of personnel entering patient rooms (75; 96%), limited resident involvement (71; 91%), and new or refined team roles (74; 95%). New or adapted technology is being used for coronavirus disease 2019 resuscitations in 58 centers (74%). Most institutions (57; 73%) are using enhanced personal protective equipment for all coronavirus disease 2019 resuscitation events; 18 (23%) have personal protective equipment policies dependent on the performance of aerosol generating procedures. Due to coronavirus disease 2019, most respondents are intubating earlier during cardiopulmonary resuscitation (56; 72%), utilizing video laryngoscopy (67; 86%), pausing chest compressions during laryngoscopy (56; 72%), and leaving patients connected to the ventilator during cardiopulmonary resuscitation (56; 72%). Responses were varied regarding airway personnel, prone cardiopulmonary resuscitation, ventilation strategy during cardiopulmonary resuscitation without an airway in place, and extracorporeal cardiopulmonary resuscitation. Most institutions (46; 59%) do not have policies regarding limitations of resuscitation efforts in coronavirus disease 2019 patients. CONCLUSIONS: Most U.S. pediatric institutions rapidly adapted their resuscitation systems and practices in response to the coronavirus disease 2019 pandemic. Changes were commonly related to team members and roles, personal protective equipment, and airway and breathing management, reflecting attempts to balance quality resuscitation with healthcare provider safety.


Subject(s)
Cardiopulmonary Resuscitation/methods , Coronavirus Infections/epidemiology , Heart Arrest/therapy , Hospitals , Pandemics , Pneumonia, Viral/epidemiology , Airway Management/methods , Betacoronavirus , COVID-19 , Child , Coronavirus Infections/therapy , Humans , Intensive Care Units, Pediatric , Pneumonia, Viral/therapy , Practice Guidelines as Topic , SARS-CoV-2 , Surveys and Questionnaires , United States
6.
Pediatr Crit Care Med ; 21(10): e898-e907, 2020 10.
Article in English | MEDLINE | ID: mdl-32639467

ABSTRACT

OBJECTIVES: Postcardiac arrest care bundles following adult cardiac arrest are associated with improved survival to discharge. We aimed to evaluate whether a clinical pathway and computerized order entry were associated with improved pediatric postcardiac arrest care and discharge outcomes. DESIGN: Single-center retrospective before-after study. SETTING: Academic PICU. PATIENTS: Patients who suffered an in- or out-of-hospital cardiac arrest from January 2008 to December 2015 cared for in the PICU within 12 hours of sustained return of circulation. INTERVENTION: Deployment of a postcardiac arrest clinical pathway and computerized order entry system. MEASUREMENTS AND MAIN RESULTS: There were 380 patients included-163 in the pre-pathway period and 217 in the post-pathway period. Primary outcome was percent adherence to pathway clinical goals at 0-6 and 6-24 hours post-return of circulation and to diagnostics (continuous electroencephalogram monitoring, head CT for out-of-hospital cardiac arrests, echocardiogram). Secondary outcomes included survival to hospital discharge and survival with favorable neurologic outcome (Pediatric Cerebral Performance Category of 1-3 or no change from baseline). The pre-pathway and post-pathway groups differed in their baseline Pediatric Cerebral Performance Category scores and the following causes of arrest: airway obstruction, arrhythmias, and electrolyte abnormalities. Pathway adherence was not significantly different between the pre-pathway and post-pathway groups, with the exception of higher rates of continuous electroencephalogram monitoring (45% vs 64%; p < 0.001). There was no difference in survival to hospital discharge between the two groups (56% vs 67%; adjusted odds ratio, 1.68; 95% CI, 0.95-2.84; p = 0.05). Survival to discharge was higher in the post-pathway group for the in-hospital cardiac arrest cohort (55% vs 76%; adjusted odds ratio, 3.06; 95% CI, 1.44-6.51; p < 0.01). There was no difference in favorable neurologic outcome between all patients (adjusted odds ratio, 1.21; 95% CI, 0.72-2.04) or among survivors (adjusted odds ratio, 0.72; 95% CI, 0.27-1.43). CONCLUSIONS: After controlling for known potential confounders, the creation and deployment of a postcardiac arrest care pathway and computerized order entry set were not associated with improvement in pathway adherence or overall outcomes, but was associated with increased survival to hospital discharge for children with in-hospital cardiac arrests.


Subject(s)
Cardiopulmonary Resuscitation , Out-of-Hospital Cardiac Arrest , Adult , Child , Controlled Before-After Studies , Critical Pathways , Humans , Out-of-Hospital Cardiac Arrest/therapy , Retrospective Studies , Treatment Outcome
7.
Pediatr Crit Care Med ; 21(8): e485-e490, 2020 08.
Article in English | MEDLINE | ID: mdl-32459793

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 pandemic has required that hospitals rapidly adapt workflows and processes to limit disease spread and optimize the care of critically ill children. DESIGN AND SETTING: As part of our institution's coronavirus disease 2019 critical care workflow design process, we developed and conducted a number of simulation exercises, increasing in complexity, progressing to intubation wearing personal protective equipment, and culminating in activation of our difficult airway team for an airway emergency. PATIENTS AND INTERVENTIONS: In situ simulations were used to identify and rework potential failure points to generate guidance for optimal airway management in coronavirus disease 2019 suspected or positive children. Subsequent to this high-realism difficult airway simulation was a real-life difficult airway event in a patient suspected of coronavirus disease 2019 less than 12 hours later, validating potential failure points and effectiveness of rapidly generated guidance. MEASUREMENTS AND MAIN RESULTS: A number of potential workflow challenges were identified during tabletop and physical in situ manikin-based simulations. Experienced clinicians served as participants, debriefed, and provided feedback that was incorporated into local site clinical pathways, job aids, and suggested practices. Clinical management of an actual suspected coronavirus disease 2019 patient with difficult airway demonstrated very similar success and anticipated failure points. Following debriefing and assembly of a success/failure grid, a coronavirus disease 2019 airway bundle template was created using these simulations and clinical experiences for others to adapt to their sites. CONCLUSIONS: Integration of tabletop planning, in situ simulations, and debriefing of real coronavirus disease 2019 cases can enhance planning, training, job aids, and feasible policies/procedures that address human factors, team communication, equipment choice, and patient/provider safety in the coronavirus disease 2019 pandemic era.


Subject(s)
Coronavirus Infections/therapy , Intubation, Intratracheal/methods , Pneumonia, Viral/therapy , Simulation Training/methods , Workflow , Betacoronavirus , COVID-19 , Humans , Inservice Training/methods , Male , Pandemics , SARS-CoV-2 , Young Adult
8.
Pediatr Crit Care Med ; 20(1): 71-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30234675

ABSTRACT

OBJECTIVES: To create a bedside peripherally inserted central catheter service to increase placement of bedside peripherally inserted central catheter in PICU patients. DESIGN: Two-phase observational, pre-post design. SETTING: Single-center quaternary noncardiac PICU. PATIENTS: All patients admitted to the PICU. INTERVENTIONS: From June 1, 2015, to May 31, 2017, a bedside peripherally inserted central catheter service team was created (phase I) and expanded (phase II) as part of a quality improvement initiative. A multidisciplinary team developed a PICU peripherally inserted central catheter evaluation tool to identify amenable patients and to suggest location and provider for procedure performance. Outcome, process, and balancing metrics were evaluated. MEASUREMENTS AND MAIN RESULTS: Bedside peripherally inserted central catheter service placed 130 of 493 peripherally inserted central catheter (26%) resulting in 2,447 hospital central catheter days. A shift in bedside peripherally inserted central catheter centerline proportion occurred during both phases. Median time from order to catheter placement was reduced for peripherally inserted central catheters placed by bedside peripherally inserted central catheter service compared with placement in interventional radiology (6 hr [interquartile range, 2-23 hr] vs 34 hr [interquartile range, 19-61 hr]; p < 0.001). Successful access was achieved by bedside peripherally inserted central catheter service providers in 96% of patients with central tip position in 97%. Bedside peripherally inserted central catheter service central line-associated bloodstream infection and venous thromboembolism rates were similar to rates for peripherally inserted central catheters placed in interventional radiology (all central line-associated bloodstream infection, 1.23 vs 2.18; p = 0.37 and venous thromboembolism, 1.63 vs 1.57; p = 0.91). Peripherally inserted central catheters in PICU patients had reduced in-hospital venous thromboembolism rate compared with PICU temporary catheter in PICU rate (1.59 vs 5.36; p < 0.001). CONCLUSIONS: Bedside peripherally inserted central catheter service implementation increased bedside peripherally inserted central catheter placement and employed a patient-centered and timely process. Balancing metrics including central line-associated bloodstream infection and venous thromboembolism rates were not significantly different between peripherally inserted central catheters placed by bedside peripherally inserted central catheter service and those placed in interventional radiology.


Subject(s)
Catheterization, Peripheral/methods , Intensive Care Units, Pediatric/organization & administration , Point-of-Care Systems/organization & administration , Adolescent , Catheter-Related Infections/epidemiology , Child , Child, Preschool , Female , Humans , Male , Quality Improvement , Time Factors , Ultrasonography, Interventional , Venous Thromboembolism/epidemiology
9.
Pediatr Crit Care Med ; 19(11): e569-e575, 2018 11.
Article in English | MEDLINE | ID: mdl-30080777

ABSTRACT

OBJECTIVES: To evaluate if institutionally established calculations for transitioning continuous IV midazolam to enteral benzodiazepines maintain Withdrawal Assessment Tool-Version 1 scores equal to or less than preconversion values. DESIGN: Retrospective cohort study evaluating the effectiveness and safety of benzodiazepine conversion calculations embedded within an institution-specific clinical pathway for sedation and weaning of mechanically ventilated pediatric patients. SETTING: A 55-bed, mixed-medical, noncardiac surgical PICU in a tertiary care children's hospital. PATIENTS: All patients age 6 months to 18 years who received continuous midazolam for 5 days or longer while mechanically ventilated for 5-21 days and were then converted to either enteral diazepam or lorazepam following extubation (or return to baseline ventilator settings in tracheostomy-dependent patients) between January 1, 2015, and June 30, 2016. INTERVENTIONS: Benzodiazepine conversion calculations were applied according to institutional clinical pathway guidance. MEASUREMENTS AND MAIN RESULTS: Withdrawal Assessment Tool-Version 1 scores were compared pre and post benzodiazepine conversion. Patient demographics, benzodiazepine dose escalations, as needed benzodiazepine requirements, and severe adverse events within 48 hours of conversion were assessed. Seventy-one patient encounters were analyzed (median age, 2.5 yr; interquartile range, 1.2-5.3). The median Withdrawal Assessment Tool-Version 1 scores pre conversion and post conversion were not significantly different (1 [interquartile range, 0.75-2] and 1 [interquartile range, 0.25-2], respectively, p = 0.1). As needed benzodiazepine doses were administered in 38% of encounters post conversion, but escalation of a scheduled enteral benzodiazepine regimen was only required in 2.8% of encounters. Post conversion, one patient (1.4%) had increased seizure activity, and four patients (5.6%) required fluid boluses secondary to tachycardia or dehydration, but not hypotension. CONCLUSIONS: These findings suggest that standardized benzodiazepine conversions successfully achieved consistent Withdrawal Assessment Tool-Version 1 scores compared with preconversion values. Severe adverse events associated with oversedation and/or withdrawal were minimal and confounded by underlying disease states.


Subject(s)
Diazepam/administration & dosage , Drug Dosage Calculations , Drug Substitution , Hypnotics and Sedatives/administration & dosage , Lorazepam/administration & dosage , Midazolam/administration & dosage , Airway Extubation/adverse effects , Child, Preschool , Diazepam/pharmacokinetics , Female , Humans , Hypnotics and Sedatives/adverse effects , Hypnotics and Sedatives/pharmacokinetics , Infant , Infusions, Intravenous/methods , Intensive Care Units, Pediatric , Lorazepam/pharmacokinetics , Midazolam/adverse effects , Midazolam/pharmacokinetics , Quality Improvement , Respiration, Artificial/adverse effects , Retrospective Studies , Substance Withdrawal Syndrome/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL