Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(4): e0153184, 2016.
Article in English | MEDLINE | ID: mdl-27049650

ABSTRACT

One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15-30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m-among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.


Subject(s)
Coral Reefs , Australia
2.
Mar Drugs ; 13(4): 1632-46, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25812034

ABSTRACT

Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature.


Subject(s)
Antifungal Agents/isolation & purification , Candida albicans/drug effects , Cholestadienes/isolation & purification , Cladosporium/drug effects , Drug Discovery , Glycine/analogs & derivatives , Porifera/chemistry , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Atlantic Ocean , Candida albicans/growth & development , Cholestadienes/chemistry , Cholestadienes/pharmacology , Chromatography, High Pressure Liquid , Circular Dichroism , Cladosporium/growth & development , Disk Diffusion Antimicrobial Tests , Glycine/chemistry , Glycine/isolation & purification , Glycine/pharmacology , Ireland , Magnetic Resonance Spectroscopy , Methylation , Molecular Structure , Porifera/growth & development , Quantum Theory , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism , Sulfur Compounds/chemistry , Sulfur Compounds/isolation & purification , Sulfur Compounds/pharmacology
3.
PLoS One ; 8(9): e73800, 2013.
Article in English | MEDLINE | ID: mdl-24040076

ABSTRACT

Twenty-five years of Australian marine bioresources collecting and research by the Australian Institute of Marine Science (AIMS) has explored the breadth of latitudinally and longitudinally diverse marine habitats that comprise Australia's ocean territory. The resulting AIMS Bioresources Library and associated relational database integrate biodiversity with bioactivity data, and these resources were mined to retrospectively assess biogeographic, taxonomic and phylogenetic patterns in cytotoxic, antimicrobial, and central nervous system (CNS)-protective bioactivity. While the bioassays used were originally chosen to be indicative of pharmaceutically relevant bioactivity, the results have qualified ecological relevance regarding secondary metabolism. In general, metazoan phyla along the deuterostome phylogenetic pathway (eg to Chordata) and their ancestors (eg Porifera and Cnidaria) had higher percentages of bioactive samples in the assays examined. While taxonomy at the phylum level and higher-order phylogeny groupings helped account for observed trends, taxonomy to genus did not resolve the trends any further. In addition, the results did not identify any biogeographic bioactivity hotspots that correlated with biodiversity hotspots. We conclude with a hypothesis that high-level phylogeny, and therefore the metabolic machinery available to an organism, is a major determinant of bioactivity, while habitat diversity and ecological circumstance are possible drivers in the activation of this machinery and bioactive secondary metabolism. This study supports the strategy of targeting phyla from the deuterostome lineage (including ancestral phyla) from biodiverse marine habitats and ecological niches, in future biodiscovery, at least that which is focused on vertebrate (including human) health.


Subject(s)
Anti-Infective Agents/pharmacology , Biological Products/pharmacology , Calcium Channel Blockers/pharmacology , Ecology/methods , Enzyme Inhibitors/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Australia , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Bayes Theorem , Biological Products/isolation & purification , Calcium Channel Blockers/isolation & purification , Calcium Channels, N-Type/metabolism , Candida albicans/drug effects , Candida albicans/growth & development , Cell Line, Tumor , Cell Survival/drug effects , Chordata/classification , Chordata/genetics , Chordata/metabolism , Cluster Analysis , Enzyme Inhibitors/isolation & purification , Geography , Humans , Marine Biology/methods , Microbial Sensitivity Tests , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism , Phaeophyceae/chemistry , Phaeophyceae/classification , Phaeophyceae/genetics , Phylogeny , Rhodophyta/chemistry , Rhodophyta/classification , Rhodophyta/genetics
4.
J Nat Prod ; 72(6): 1115-20, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19505081

ABSTRACT

Eusynstyelamides A-C (1-3) were isolated from the Great Barrier Reef ascidian Eusynstyela latericius, together with the known metabolites homarine and trigonelline. The structures of 1-3, with relative configurations, were elucidated by interpretation of their spectroscopic data (NMR, MS, UV, IR, and CD). The NMR data of 1 were found to be virtually identical to that reported for eusynstyelamide (4), isolated from E. misakiensis, indicating that a revision of the structure of 4 is needed. Eusynstyelamides A-C exhibited inhibitory activity against neuronal nitric oxide synthase (nNOS), with IC(50) values of 41.7, 4.3, and 5.8 microM, respectively, whereas they were found to be nontoxic toward the three human tumor cell lines MCF-7 (breast), SF-268 (CNS), and H-460 (lung). Compounds 1 and 2 displayed mild inhibitory activity toward Staphylococcus aureus (IC(50) 5.6 and 6.5 mM, respectively) and mild inhibitory activity toward the C(4) plant regulatory enzyme pyruvate phosphate dikinase (PPDK) (IC(50) values of 19 and 20 mM, respectively).


Subject(s)
Indoles/isolation & purification , Indoles/pharmacology , Nitric Oxide Synthase Type I/antagonists & inhibitors , Urochordata/chemistry , Animals , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemistry , Inhibitory Concentration 50 , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pyruvate, Orthophosphate Dikinase/antagonists & inhibitors , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL