Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873189

ABSTRACT

Adaptive immune resistance (AIR) is a protective process used by cancer to escape elimination by CD8+ T cells. Inhibition of immune checkpoints PD-1 and CTLA-4 specifically target Interferon-gamma (IFNγ)-driven AIR. AIR begins at the plasma membrane where tumor cell-intrinsic cytokine signaling is initiated. Thus, plasma membrane remodeling by endomembrane trafficking could regulate AIR. Herein we report that the trafficking protein ADP-Ribosylation Factor 6 (ARF6) is critical for IFNγ-driven AIR. ARF6 prevents transport of the receptor to the lysosome, augmenting IFNγR expression, tumor intrinsic IFNγ signaling and downstream expression of immunosuppressive genes. In murine melanoma, loss of ARF6 causes resistance to immune checkpoint blockade (ICB). Likewise, low expression of ARF6 in patient tumors correlates with inferior outcomes with ICB. Our data provide new mechanistic insights into tumor immune escape, defined by ARF6-dependent AIR, and support that ARF6-dependent endomembrane trafficking of the IFNγ receptor influences outcomes of ICB.

3.
Oncogene ; 42(35): 2629-2640, 2023 08.
Article in English | MEDLINE | ID: mdl-37500798

ABSTRACT

Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Animals , Mice , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Melanoma/pathology , Uveal Neoplasms/metabolism , Disease Models, Animal , Adaptor Proteins, Signal Transducing/metabolism
4.
Sci Rep ; 12(1): 1837, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115550

ABSTRACT

Breast cancer is a multifactorial disease in which the interplay among multiple risk factors remains unclear. Energy homeostasis genes play an important role in carcinogenesis and their interactions with the serum concentrations of IGF-1 and IGFBP-3 on the risk of breast cancer have not yet been investigated. The aim of this study was to assess the modifying effect of the genetic variation in some energy homeostasis genes on the association of serum concentrations of IGF-1 and IGFBP-3 with breast cancer risk. We analyzed 78 SNPs from 10 energy homeostasis genes in premenopausal women from the 4-Corner's Breast Cancer Study (61 cases and 155 controls) and the Mexico Breast Cancer Study (204 cases and 282 controls). After data harmonization, 71 SNPs in HWE were included for interaction analysis. Two SNPs in two genes (MBOAT rs13272159 and NPY rs16131) showed an effect modification on the association between IGF-1 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). In addition, five SNPs in three genes (ADIPOQ rs182052, rs822391 and rs7649121, CARTPT rs3846659, and LEPR rs12059300) had an effect modification on the association between IGFBP-3 serum concentration and breast cancer risk (Pinteraction < 0.05, adjusted Pinteraction < 0.20). Our findings showed that variants of energy homeostasis genes modified the association between the IGF-1 or IGFBP-3 serum concentration and breast cancer risk in premenopausal women. These findings contribute to a better understanding of this multifactorial pathology.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/genetics , Energy Metabolism/genetics , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/metabolism , Polymorphism, Single Nucleotide , Adult , Breast Neoplasms/pathology , Case-Control Studies , Female , Genetic Association Studies , Humans , Middle Aged , Predictive Value of Tests , Premenopause , Risk Assessment , Risk Factors , United States
5.
Cancer Res ; 79(11): 2892-2908, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31048499

ABSTRACT

Melanoma has an unusual capacity to spread in early-stage disease, prompting aggressive clinical intervention in very thin primary tumors. Despite these proactive efforts, patients with low-risk, low-stage disease can still develop metastasis, indicating the presence of permissive cues for distant spread. Here, we show that constitutive activation of the small GTPase ARF6 (ARF6Q67L) is sufficient to accelerate metastasis in mice with BRAFV600E/Cdkn2aNULL melanoma at a similar incidence and severity to Pten loss, a major driver of PI3K activation and melanoma metastasis. ARF6Q67L promoted spontaneous metastasis from significantly smaller primary tumors than PTENNULL, implying an enhanced ability of ARF6-GTP to drive distant spread. ARF6 activation increased lung colonization from circulating melanoma cells, suggesting that the prometastatic function of ARF6 extends to late steps in metastasis. Unexpectedly, ARF6Q67L tumors showed upregulation of Pik3r1 expression, which encodes the p85 regulatory subunit of PI3K. Tumor cells expressing ARF6Q67L displayed increased PI3K protein levels and activity, enhanced PI3K distribution to cellular protrusions, and increased AKT activation in invadopodia. ARF6 is necessary and sufficient for activation of both PI3K and AKT, and PI3K and AKT are necessary for ARF6-mediated invasion. We provide evidence for aberrant ARF6 activation in human melanoma samples, which is associated with reduced survival. Our work reveals a previously unknown ARF6-PI3K-AKT proinvasive pathway, it demonstrates a critical role for ARF6 in multiple steps of the metastatic cascade, and it illuminates how melanoma cells can acquire an early metastatic phenotype in patients. SIGNIFICANCE: These findings reveal a prometastatic role for ARF6 independent of tumor growth, which may help explain how melanoma spreads distantly from thin, early-stage primary tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2892/F1.large.jpg.


Subject(s)
ADP-Ribosylation Factors/metabolism , Melanoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Skin Neoplasms/pathology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Guanosine Triphosphate/metabolism , Humans , Lung Neoplasms/secondary , Melanoma/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice, Mutant Strains , Mice, SCID , Neoplasm Metastasis , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-akt/metabolism , Skin Neoplasms/metabolism
6.
Genomics ; 111(4): 762-771, 2019 07.
Article in English | MEDLINE | ID: mdl-29860032

ABSTRACT

INTRODUCTION: We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases. METHODS: We focused on fold change (FC) > 1.50 or <0.67 for genes and miRNAs, that were statistically significant after adjustment for multiple comparisons. We evaluated the linear association between the differential expression of miRNA and mRNA. miRNA:mRNA seed-region matches also were determined. RESULTS: Eleven dysregulated genes were associated with 37 dysregulated miRNAs; all were down-stream from the TP53 gene. MiR-150-5p (HR = 0.82) and miR-196b-5p (HR 0.73) significantly reduced the likelihood of dying from CRC when miRNA expression increased in rectal tumors. CONCLUSIONS: Our data suggest that activation of p53 from cellular stress, could target downstream genes that in turn could influence cell cycle arrest, apoptosis, and angiogenesis through mRNA:miRNA interactions.


Subject(s)
Carcinoma/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Tumor Suppressor Protein p53/metabolism , Aged , Apoptosis , Carcinoma/metabolism , Cell Cycle , Colorectal Neoplasms/metabolism , Female , Gene Regulatory Networks , Humans , Intestinal Mucosa/metabolism , Male , MicroRNAs/metabolism , Middle Aged , Signal Transduction , Tumor Suppressor Protein p53/genetics
7.
BMC Genomics ; 19(1): 953, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572829

ABSTRACT

BACKGROUND: When genomics researchers design a high-throughput study to test for differential expression, some biological systems and research questions provide opportunities to use paired samples from subjects, and researchers can plan for a certain proportion of subjects to have paired samples. We consider the effect of this paired samples proportion on the statistical power of the study, using characteristics of both count (RNA-Seq) and continuous (microarray) expression data from a colorectal cancer study. RESULTS: We demonstrate that a higher proportion of subjects with paired samples yields higher statistical power, for various total numbers of samples, and for various strengths of subject-level confounding factors. In the design scenarios considered, the statistical power in a fully-paired design is substantially (and in many cases several times) greater than in an unpaired design. CONCLUSIONS: For the many biological systems and research questions where paired samples are feasible and relevant, substantial statistical power gains can be achieved at the study design stage when genomics researchers plan on using paired samples from the largest possible proportion of subjects. Any cost savings in a study design with unpaired samples are likely accompanied by underpowered and possibly biased results.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA/methods , Transcriptome , High-Throughput Nucleotide Sequencing/methods , Humans , Models, Statistical , Oligonucleotide Array Sequence Analysis/methods , Research Design , Sample Size
8.
J Transl Med ; 16(1): 191, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29986714

ABSTRACT

BACKGROUND: The TGFß-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression. METHODS: In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFß-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months. RESULTS: Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months. CONCLUSION: These data support an interaction between miRNAs and genes in the TGFß-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Adult , Aged , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/metabolism , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Statistics, Nonparametric
9.
Genes Cancer ; 9(1-2): 53-65, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29725503

ABSTRACT

Uncontrolled cell replication is a key component of carcinogenesis. MicroRNAs (miRNAs) regulate genes involved in checkpoints, DNA repair, and genes encoding for key proteins regulating the cell cycle. We investigated how miRNAs and mRNAs in colorectal cancer subjects interact to regulate the cell cycle. Using RNA-Seq data from 217 individuals, we analyzed differential expression (carcinoma minus normal mucosa) of 123 genes within the cell cycle pathway with differential miRNA expression, adjusting for age and sex. Multiple comparison adjustments for gene/miRNA associations were made at the gene level using an FDR <0.05. Differentially expressed miRNAs and mRNAs were tested for associations with colorectal cancer survival. MRNA and miRNA sequences were compared to identify seed region matches to support biological interpretation of the observed associations. Sixty-seven mRNAs were dysregulated with a fold change (FC) <0.67 or >1.50. Thirty-two mRNAs were associated with 48 miRNAs; 102 of 290 total associations had identified seed matches; of these, ten had negative beta coefficients. Hsa-miR-15a-5p and hsa-miR-20b-5p were associated with colorectal cancer survival with an FDR <0.05 (HR 0.86 95% CI 0.79, 0.94; HR 0.83 95% CI 0.75, 0.91 respectively). Our findings suggest that miRNAs impact mRNA translation at multiple levels within the cell cycle.

10.
Cancer Inform ; 17: 1176935118766522, 2018.
Article in English | MEDLINE | ID: mdl-29636593

ABSTRACT

Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation and apoptosis. We examined associations of differential gene and microRNA (miRNA) expression between carcinoma and paired normal mucosa for 241 genes in the KEGG-identified MAPK-signaling pathway among 217 colorectal cancer (CRC) cases. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0; Agilent Technologies Inc., Santa Clara, CA, USA) were analyzed. We first identified genes most strongly associated with CRC using a fold change (FC) of >1.50 or <0.67) that were statistically significant after adjustment for multiple comparisons. We then determined miRNAs associated with dysregulated genes and through miRNA:mRNA (messenger RNA) seed region matches discerned genes with a greater likelihood of having a direct biological association. Ninety-nine genes had a meaningful FC for all CRC, microsatellite unstable-specific tumors, or microsatellite stable-specific tumors. Thirteen dysregulated genes were associated with miRNAs, totaling 68 miRNA:mRNA associations. Thirteen of the miRNA:mRNA associations had seed region matches where the differential expression between the miRNA and mRNA was inversely related suggesting a direct association as a result of their binding. Several direct associations, upstream of ERK1/ERK2, JNK, and p38, were found for PDGFRA with 7 miRNAs; RASGRP3 and PRKCB with miR-203a; and TGFBR1 with miR-6071 and miR-2117. Other associations between miRNAs and mRNAs are most likely indirect, resulting from feedback and feed forward loops. Our results suggest that miRNAs may alter MAPK signaling through direct binding with key genes in this pathway. We encourage others to validate results in targeted CRC experiments that can help solidify important therapeutic targets.

11.
Apoptosis ; 23(3-4): 237-250, 2018 04.
Article in English | MEDLINE | ID: mdl-29516317

ABSTRACT

Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N = 217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of > 1.50 or < 0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC < 0.67) and 18 were significantly upregulated (FC > 1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.


Subject(s)
Apoptosis , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adult , Aged , Case-Control Studies , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/physiopathology , Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/metabolism , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/metabolism , Middle Aged , RNA, Messenger/genetics , Survivin/metabolism
12.
Genes Chromosomes Cancer ; 57(7): 366-376, 2018 07.
Article in English | MEDLINE | ID: mdl-29575536

ABSTRACT

Colorectal cancer (CRC) accounts for about 8% of all new cancer cases diagnosed in the US. We used whole exome sequence data from triplet samples (colon carcinoma, colon adenoma, and normal tissue) from 18 individuals to assess gene mutation rates. Of the 2 204 genes that were mutated, APC, TTN, TP53, KRAS, OBSCN, SOX9, PCDH17, SIGLEC10, MYH6, and BRD9 were consistent with genes being an early driver of carcinogenesis, in that they were mutated in multiple adenomas and multiple carcinomas. Fifty-two genes were mutated in ≥12.5% of microsatellite stable (MSS) carcinomas but not in any of the adenomas, in line with the profile of a late driver event involved in tumor progression. Thirty-eight genes were sequenced in a larger independent set of 148 carcinoma/normal tissue pairs to obtain more precise mutation frequencies. Eight of the genes, APC, TP53, ATM, CSMD3, LRP1B, RYR2, BIRC6, and MUC17, contained mutations in >20% of the carcinomas. Interestingly, mutations in four genes in addition to APC that are associated with dysregulation of Wnt signaling, were all classified as early driver events. Most of the genes that are commonly associated with colon cancer, including APC, TP53, and KRAS, were all classified as being early driver genes being mutated in both adenomas and carcinomas. Classifying genes as potential early and late driver events points to candidate genes that may help dissect pathways involved in both tumor initiation and progression.


Subject(s)
Adenoma/genetics , Carcinogenesis/genetics , Carcinoma/genetics , Colonic Neoplasms/genetics , Aged , Colonic Neoplasms/pathology , Disease Progression , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Mutation , Exome Sequencing
13.
Oncotarget ; 9(5): 6075-6085, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464056

ABSTRACT

The Wnt-signaling pathway functions in regulating cell growth and thus is involved in the carcinogenic process of several cancers, including colorectal cancer. We tested the hypothesis that multiple genes in this signaling pathway are dysregulated and that miRNAs are associated with these dysregulated genes. We used data from 217 colorectal cancer (CRC) cases to evaluate differences in Wnt-signaling pathway gene expression between paired CRC and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most strongly associated with CRC (fold change (FC) of >1.5 or <0.67) and that were statistically significant after adjustment for multiple comparisons. Of the 138 Wnt-signaling pathway genes examined, 27 were significantly down-regulated (FC<0.67) and 32 genes were significantly up-regulated (FC>1.50) after adjusting for multiple comparisons. Thirteen of the 66 Wnt-signaling genes that were differentially expressed in CRC tumors were associated with differential expression of miRNAs. A total of 93 miRNA:mRNA associations were detected for these 13 genes. Of these 93 associations, 36 miRNA seed-region matches were observed, suggesting that miRNAs have both direct and indirect effects on Wnt-signaling pathway genes. In summary, our data supports the hypothesis that the Wnt-signaling pathway is dysregulated in CRC and suggest that miRNAs may importantly influence that dysregulation.

14.
15.
Genes Cancer ; 9(5-6): 232-246, 2018 May.
Article in English | MEDLINE | ID: mdl-30603058

ABSTRACT

JAK-STAT signaling influences many downstream processes that, unchecked, contribute to carcinogenesis and metastasis. MicroRNAs (miRNAs) are hypothesized as a mechanism to prevent uncontrolled growth from continuous JAK-STAT activation. We investigated differential expression between paired carcinoma and normal colorectal mucosa of messenger RNAs (mRNAs) and miRNAs using RNA-Seq and Agilent Human miRNA Microarray V19.0 data, respectively, using a negative binomial mixed effects model to test 122 JAK-STAT-signaling genes in 217 colorectal cancer (CRC) cases. Overall, 42 mRNAs were differentially expressed with a fold change of >1.50 or <0.67, remaining significant with a false discovery rate of < 0.05; four were dysregulated in microsatellite stable (MSS) tumors, eight were for microsatellite unstable (MSI)-specific tumors. Of these 54 mRNAs, 17 were associated with differential expression of 46 miRNAs, comprising 116 interactions: 16 were significant overall, one for MSS tumors only. Twenty of the 29 interactions with negative beta coefficients involved miRNA seed sequence matches with mRNAs, supporting miRNA-mediated mRNA repression; 17 of these mRNAs encode for receptor molecules. Receptor molecule degradation is an established JAK-STAT signaling control mechanism; our results suggest that miRNAs facilitate this process. Interactions involving positive beta coefficients may illustrate downstream effects of disrupted STAT activity, and subsequent miRNA upregulation.

16.
Mol Carcinog ; 57(2): 243-261, 2018 02.
Article in English | MEDLINE | ID: mdl-29068474

ABSTRACT

The PI3K/AKT-signaling pathway is one of the most frequently activated signal-transduction pathways in cancer. We examined how dysregulated gene expression is associated with miRNA expression in this pathway in colorectal cancer (CRC). We used data from 217 CRC cases to evaluate differential pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most associated with CRC (fold change (FC) of >1.5 or <0.67) that were statistically significant after adjustment for multiple comparisons. Of the 304 genes evaluated, 76 had a FC of <0.67, and 57 had a FC of >1.50; 47 of these genes were associated with miRNA differential expression. There were 145 mRNA:miRNA seed-region matches of which 26 were inversely associated suggesting a greater likelihood of a direct association. Most miRNA:mRNA associations were with factors that stimulated the pathway. For instance, both IL6R and PDGFRA had inverse seed-region matches with seven miRNAs, suggesting that these miRNAs have a direct effect on these genes and may be key elements in activation of the pathway. Other miRNA:mRNA associations with similar impact on the pathway were miR-203a with ITGA4, miR-6071 with ITGAV, and miR-375 with THBS2, all genes involved in extracellular matrix function that activate PI3Ks. Gene expression in the PI3K/Akt-signaling pathway is dysregulated in CRC. MiRNAs were associated with many of these dysregulated genes either directly or in an indirect manner.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , RNA, Messenger/genetics
17.
Genes Chromosomes Cancer ; 57(4): 192-202, 2018 04.
Article in English | MEDLINE | ID: mdl-29226599

ABSTRACT

Transcription factors (TFs) and microRNAs (miRNAs) regulate gene expression: TFs by influencing messenger RNA (mRNA) transcription and miRNAs by influencing mRNA translation and transcript degradation. Additionally, miRNAs and TFs alter each other's expression, making it difficult to ascertain the effect either one has on target gene (TG) expression. In this investigation, we use a two-way interaction model with the TF and miRNA as independent variables to investigate whether miRNAs and TFs work together to influence TG expression levels in colon cancer subjects. We used known TF binding sites and validated miRNA targets to determine potential miRNA-TF-TG interactions, restricting interactions to those with a TF previously associated with altered risk of colorectal cancer death. We analyzed interactions using normal colonic mucosa expression as well as differential expression, which is measured as colonic carcinoma expression minus normal colonic mucosa expression. We analyzed 3518 miRNA-TF-TG triplets using normal mucosa expression and 617 triplets using differential expression. Normal colonic RNA-Seq data were available for 168 individuals; of these, 159 also had carcinoma RNA-Seq data. Thirteen unique miRNA-TF-TG interactions, comprising six miRNAs, four TFs, and 11 TGs, were statistically significant after adjustment for multiple comparisons in normal colonic mucosa, and 14 unique miRNA-TF-TG interactions, comprising two miRNAs, two TFs, and 13 TGs, were found for carcinoma-normal differential expression. Our results show that TG expression is influenced by both miRNAs as well as TFs, and the influence of one regulator impacts the effect of the other on the shared TG expression.


Subject(s)
Colonic Neoplasms/genetics , MicroRNAs/genetics , Transcription Factors/genetics , Aged , Colonic Neoplasms/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , MicroRNAs/metabolism , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rectal Neoplasms/genetics , Rectal Neoplasms/metabolism , Transcription Factors/metabolism
18.
J Cancer Res Clin Oncol ; 144(2): 269-283, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29188362

ABSTRACT

BACKGROUND: The nuclear factor-kappa B (NF-κB) signalling pathway is a regulator of immune response and inflammation that has been implicated in the carcinogenic process. We examined differentially expressed genes in this pathway and miRNAs to determine associations with colorectal cancer (CRC). METHODS: We used data from 217 CRC cases to evaluate differences in NF-κB signalling pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analysed. We evaluated genes most strongly associated and differentially expressed (fold change (FC) of > 1.5 or < 0.67) that were statistically significant after adjustment for multiple comparisons. RESULTS: Of the 92 genes evaluated, 22 were significantly downregulated and nine genes were significantly upregulated in all tumours. Two additional genes (CD14 and CSNK2A1) were dysregulated in MSS tumours and two genes (CARD11 and VCAM1) were downregulated and six genes were upregulated (LYN, TICAM2, ICAM1, IL1B, CCL4 and PTGS2) in MSI tumours. Sixteen of the 21 dysregulated genes were associated with 40 miRNAs. There were 76 miRNA:mRNA associations of which 38 had seed-region matches. Genes were associated with multiple miRNAs, with TNFSRF11A (RANK) being associated with 15 miRNAs. Likewise several miRNAs were associated with multiple genes (miR-150-5p with eight genes, miR-195-5p with four genes, miR-203a with five genes, miR-20b-5p with four genes, miR-650 with six genes and miR-92a-3p with five genes). CONCLUSIONS: Focusing on the genes and their associated miRNAs within the entire signalling pathway provides a comprehensive understanding of this complex pathway as it relates to CRC and offers insight into potential therapeutic agents.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , NF-kappa B/metabolism , Adult , Aged , Case-Control Studies , Female , Humans , Male , MicroRNAs/biosynthesis , Middle Aged , NF-kappa B/genetics
19.
Breast Cancer Res Treat ; 168(2): 443-455, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29190005

ABSTRACT

PURPOSE: ALDH1A1, one of the main isotopes of aldehyde dehydrogenase-1 is involved in the differentiation and protection of normal hematopoietic stem cells and functions in alcohol sensitivity and dependence. We evaluated the associations between ALDH1A1 polymorphisms, alcohol consumption, and mortality among Hispanic and non-Hispanic white (NHW) breast cancer (BC) cases from the Breast Cancer Health Disparities Study. METHODS: Nine SNPs in ALDH1A1 were evaluated in 920 Hispanic and 1372 NHW women diagnosed with incident invasive BC. Adjusted Cox proportional hazard regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Models were stratified by Native American (NA) ancestry and alcohol consumption. RESULTS: A total of 443 deaths occurred over a median follow-up time of 11 years. After adjusting all results for multiple comparisons, rs7027604 was significantly associated with all-cause mortality (HRAA = 1.40; 95% CI 1.13-1.73, P adj = 0.018). The rs1424482 CC genotype (HRCC = 1.69; 95% CI 1.20-2.37, P adj = 0.027) and the rs7027604 AA genotype (HRAA = 1.65; 95% CI 1.21-2.26, P adj = 0.018) were positively associated with non-BC mortality. Among long-term light drinkers, rs1888202 was associated with decreased all-cause mortality (HRCG/GG = 0.36; 95% CI 0.20-0.64), while associations were not significant among non-drinkers or moderate/heavy drinkers (P interation = 0.218). The increased risk of all-cause mortality associated with rs63319 was limited to women with low NA ancestry (HRAA = 1.53; 95% CI 1.19-1.97). CONCLUSIONS: Multiple SNPs in ALDH1A1 were associated with increased risk of mortality after BC. Future BC studies examining the relationship between ALDH1A1 and mortality should consider the modifying effects of alcohol consumption and NA ancestry.


Subject(s)
Alcohol Drinking/ethnology , Aldehyde Dehydrogenase/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Health Status Disparities , Adult , Age Factors , Aged , Aldehyde Dehydrogenase 1 Family , Breast Neoplasms/mortality , Case-Control Studies , Female , Follow-Up Studies , Hispanic or Latino/genetics , Humans , Middle Aged , Polymorphism, Single Nucleotide , Retinal Dehydrogenase , Risk Factors , Survival Analysis , Time Factors , White People/genetics
20.
BMC Cancer ; 17(1): 707, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29084506

ABSTRACT

BACKGROUND: microRNAs are small non-protein-coding RNA molecules that regulate gene expression, and have a potential epigenetic role in disease progression and survival of colorectal cancer. In terms of tumor-normal expression differences, many microRNAs exhibit evidence of being up-regulated in some subjects but down-regulated in others, or are dysregulated only for a subset of the population. We present and implement an approach to identify factors (lifestyle, tumor molecular phenotype, and survival-related) that are associated with the direction and/or significance of these microRNAs' tumor-normal expression differences in colorectal cancer. METHODS: Using expression data for 1394 microRNAs and 1836 colorectal cancer subjects (each with both tumor and normal samples), we perform a dip test to identify microRNAs with multimodal distributions of tumor-normal expression differences. For proximal, distal, and rectal tumor sites separately, these microRNAs are tested for tumor-normal differential expression using a signed rank test, both overall and within levels of each lifestyle, tumor molecular phenotype, and survival-related factor. Appropriate adjustments are made to control the overall FDR. RESULTS: We identify hundreds of microRNAs whose direction and/or significance of tumor-normal differential expression is associated with one or more lifestyle, tumor molecular phenotype, or survival-related factors. CONCLUSIONS: The results of this study demonstrate the benefit to colorectal cancer researchers to consider multiple subject-level factors when studying dysregulation of microRNAs, whose tumor-related changes in expression can be associated with multiple factors. Our results will serve as a publicly-available resource to provide clarifying information about various factors associated with the direction and significance of tumor-normal differential expression of microRNAs in colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adult , Aged , Case-Control Studies , Colorectal Neoplasms/pathology , Disease Progression , Humans , Life Style , Middle Aged , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...