Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Clin Pharmacokinet ; 63(4): 483-496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424308

ABSTRACT

BACKGROUND AND OBJECTIVES: Encorafenib is a kinase inhibitor indicated for the treatment of patients with unresectable or metastatic melanoma or metastatic colorectal cancer, respectively, with selected BRAF V600 mutations. A clinical drug-drug interaction (DDI) study was designed to evaluate the effect of encorafenib on rosuvastatin, a sensitive substrate of OATP1B1/3 and breast cancer resistance protein (BCRP), and bupropion, a sensitive CYP2B6 substrate. Coproporphyrin I (CP-I), an endogenous substrate for OATP1B1, was measured in a separate study to deconvolute the mechanism of transporter DDI. METHODS: DDI study participants received a single oral dose of rosuvastatin (10 mg) and bupropion (75 mg) on days - 7, 1, and 14 and continuous doses of encorafenib (450 mg QD) and binimetinib (45 mg BID) starting on day 1. The CP-I data were collected from participants in a phase 3 study who received encorafenib (300 mg QD) and cetuximab (400 mg/m2 initial dose, then 250 mg/m2 QW). Pharmacokinetic and pharmacodynamic analysis was performed using noncompartmental and compartmental methods. RESULTS: Bupropion exposure was not increased, whereas rosuvastatin Cmax and area under the receiver operating characteristic curve (AUC) increased approximately 2.7 and 1.6-fold, respectively, following repeated doses of encorafenib and binimetinib. Increase in CP-I was minimal, suggesting that the primary effect of encorafenib on rosuvastatin is through BCRP. Categorization of statins on the basis of their metabolic and transporter profile suggests pravastatin would have the least potential for interaction when coadministered with encorafenib. CONCLUSION: The results from these clinical studies suggest that encorafenib does not cause clinically relevant CYP2B6 induction or inhibition but is an inhibitor of BCRP and may also inhibit OATP1B1/3 to a lesser extent. Based on these results, it may be necessary to consider switching statins or reducing statin dosage accordingly for coadministration with encorafenib. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT03864042, registered 6 March 2019.


Subject(s)
Bupropion , Carbamates , Coproporphyrins , Drug Interactions , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Rosuvastatin Calcium , Sulfonamides , Adult , Aged , Female , Humans , Male , Middle Aged , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Bupropion/administration & dosage , Bupropion/pharmacokinetics , Carbamates/administration & dosage , Carbamates/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Liver-Specific Organic Anion Transporter 1/antagonists & inhibitors , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Rosuvastatin Calcium/pharmacokinetics , Rosuvastatin Calcium/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Aged, 80 and over
2.
Clin Transl Sci ; 16(12): 2675-2686, 2023 12.
Article in English | MEDLINE | ID: mdl-37837178

ABSTRACT

Encorafenib is a potent and selective ATP competitive inhibitor of BRAF V600-mutant kinase approved for patients with BRAF-mutant melanoma and colorectal cancer. Encorafenib is mainly metabolized by cytochrome P450 (CYP) 3A4 in vitro and may be susceptible to drug-drug interactions when co-administered with CYP3A inhibitors or inducers. The primary objective was to assess the impact of the strong CYP3A inhibitor posaconazole (part 1) and the moderate CYP3A and P-gp inhibitor diltiazem (part 2) on encorafenib pharmacokinetics in healthy volunteers following a single 50-mg dose. A total of 32 participants were enrolled (16 each in parts 1 and 2). The area under the curve extrapolated to infinity (AUCinf ) and maximum plasma concentration (Cmax ) geometric mean for encorafenib increased by 183% and 68.4%, respectively, when co-administered with posaconazole. Apparent encorafenib clearance decreased from 26.0 to 9.2 L/h when coadministered with posaconazole, and plasma terminal half-life (t½ ) of encorafenib increased from 4.3 to 7.3 h. The AUCinf and Cmax geometric mean for encorafenib increased by 83.0% and 44.7%, respectively, when co-administered with diltiazem. Similarly, the apparent encorafenib clearance decreased from 29.0 to 16.0 L/h when co-administered with diltiazem, and plasma t½ of encorafenib increased from 6.6 to 7.9 h. There were no deaths, serious adverse events (AEs), or patient discontinuations due to AEs in parts 1 or 2. The most frequently reported treatment-related AEs were erythema (n = 14; 88%) and headache (n = 11; 69%) in part 1 and headache (n = 7; 44%) in part 2. The results of this study indicate that co-administration of encorafenib with strong or moderate CYP3A4 inhibitors should be avoided.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Melanoma , Humans , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Diltiazem/therapeutic use , Drug Interactions , Headache/chemically induced , Melanoma/drug therapy , Melanoma/genetics , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/therapeutic use
3.
Pharmacol Res Perspect ; 11(5): e01140, 2023 10.
Article in English | MEDLINE | ID: mdl-37775918

ABSTRACT

Encorafenib is a novel kinase inhibitor of BRAF V600E as well as wild-type BRAF and CRAF and has received approval, in combination with binimetinib, to treat BRAF V600E or V600K mutation-positive unresectable or metastatic melanoma or in combination with cetuximab to treat BRAF V600E mutation-positive colorectal cancer. The absorption, distribution, metabolism and excretion (ADME) of encorafenib was studied by administering [14 C] encorafenib (100 mg containing 90 µCi of radiolabeled material) to 4 healthy male subjects (NCT01436656). Following a single oral 100-mg dose of [14 C] encorafenib to healthy male subjects, the overall recovery of radioactivity in the excreta was ≥93.9% in all four subjects, indicating that good mass balance was achieved. An equal mean of 47.2% for the radioactivity dose was eliminated in the feces and urine. The percentage of the dose eliminated in the feces (5.0%) and urine (1.8%) as unchanged encorafenib was minor. Metabolism was found to be the major clearance pathway (~88% of the recovered radioactive dose) for encorafenib in humans and is predominantly mediated through N-dealkylation of the isopropyl carbamic acid methyl ester to form the primary phase 1 direct metabolite M42.5 (LHY746). Oral absorption was estimated from the radioactive dose recovered in the urine (47.2%) and the total radioactive dose recovered in the feces as metabolites (39%). Based on these values and the assumptions that encorafenib and its metabolites are stable in feces, the fraction of oral absorption was estimated to be at least ~86%.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Male , Proto-Oncogene Proteins B-raf/therapeutic use , Sulfonamides , Melanoma/drug therapy
4.
Mol Pharm ; 20(5): 2589-2599, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37037186

ABSTRACT

Encorafenib is a kinase inhibitor indicated for the treatment of patients with BRAF mutant melanoma and BRAF mutant metastatic colorectal cancer. To understand the effect of food and coadministration with a proton-pump inhibitor (PPI), in vitro, in vivo, and in silico data were generated to optimize the clinical dose, evaluate safety, and better understand the oral absorption process under these conditions. Study 1 evaluated the effect of food on the plasma pharmacokinetics, safety, and tolerability after a single oral dose of encorafenib 100 mg. Study 2 evaluated the same end points with coadministration of encorafenib and rabeprazole (PPI perpetrator). The in vitro gastrointestinal TIM-1 model was used to investigate the release of encorafenib and the amount available for absorption under different testing conditions (fasted, fed, and with the use of a PPI). The fasted, fed, and PPI states were predicted for the encorafenib commercial capsule in GastroPlus 9.8. In study 1, both AUCinf and AUClast decreased by 4% with the administration of a high-fat meal. The Cmax was 36% lower than with fasted conditions. All 3 exposure parameters in study 2 (AUCinf, AUClast, and Cmax) had mean changes of <10% when encorafenib was coadministered with a PPI. Using the in vitro gastrointestinal simulator TIM-1, the model demonstrated a similar release of drug, as the bioaccessible fraction, in the 3 conditions was equal (≥80%), predicting no PPI or food effect for this drug formulation. The modeling in GastroPlus 9.8 demonstrated complete absorption of encorafenib when formulated as an amorphous solid dispersion. To obtain these results, it was crucial to integrate the amorphous solubility of the drug that shows a 20-fold higher solubility at pH 6.8 compared with crystalline solubility. The increased amorphous solubility is likely the reason no PPI effect was observed compared with fasted state conditions. The prolongation in gastric emptying in the fed state resulted in delayed plasma Tmax for encorafenib. No dose adjustment is necessary when encorafenib is administered in the fed state or when coadministered with a PPI. Both the TIM-1 and physiologically based pharmacokinetic model results were consistent with the observed clinical data, suggesting that these will be valuable tools for future work.


Subject(s)
Proto-Oncogene Proteins B-raf , Proton Pump Inhibitors , Humans , Proton Pump Inhibitors/pharmacokinetics , Administration, Oral , Food-Drug Interactions , Pharmaceutical Preparations , Solubility , Cross-Over Studies , Biological Availability
5.
Clin Cancer Res ; 26(19): 5102-5112, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32669376

ABSTRACT

PURPOSE: This open-label, dose-finding phase Ib/II study reports the safety and activity of the first combination use with BRAF inhibitor (BRAFi) encorafenib plus MEK inhibitor (MEKi) binimetinib in patients with BRAF V600E-mutant solid tumors. PATIENTS AND METHODS: In phase I, the recommended phase 2 doses (RP2D) were established (primary objective). In phase II, the clinical activity of the combination at the RP2D was assessed (primary objective) in patients with BRAF-mutant metastatic colorectal cancer (mCRC), BRAFi-treated BRAF-mutant melanoma, and BRAFi-naïve BRAF-mutant melanoma. RESULTS: A total of 126 patients with BRAF-mutant solid tumors were enrolled (phase I: 47 patients; phase II: 79 patients). The RP2D was encorafenib 450 mg once daily plus binimetinib 45 mg twice daily and pharmacokinetic data suggest that drug exposures of each agent were similar in combination compared with single-agent studies. In the phase II cohorts, confirmed responses were seen in two of 11 (18%) evaluable patients with mCRC, 11 of 26 (42%) evaluable patients with BRAFi-pretreated melanoma, and 28 of 42 (67%) BRAFi-naïve patients with melanoma. The most common grade 3/4 adverse event in phase II was increased alanine aminotransferase. CONCLUSIONS: The combination of encorafenib (450 mg) plus binimetinib (45 mg) showed acceptable tolerability and encouraging activity in patients with BRAF V600-mutant tumors, which led to the dose selection for the melanoma COLUMBUS study. The safety profile of the combination was consistent with other approved BRAFi plus MEKi regimens, with several differences, including lower rates of dose-limiting pyrexia, arthralgia, and photosensitivity.


Subject(s)
Benzimidazoles/administration & dosage , Carbamates/administration & dosage , Melanoma/drug therapy , Mitogen-Activated Protein Kinase Kinases/genetics , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/administration & dosage , Adult , Aged , Alanine Transaminase/blood , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/adverse effects , Carbamates/adverse effects , Drug-Related Side Effects and Adverse Reactions/classification , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Male , Melanoma/blood , Melanoma/genetics , Melanoma/pathology , Middle Aged , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Sulfonamides/adverse effects
6.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
7.
Cancer Discov ; 7(9): 963-972, 2017 09.
Article in English | MEDLINE | ID: mdl-28578312

ABSTRACT

Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histology-agnostic efficacy in patients with TRK fusion-positive cancers. Although responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first 2 patients with TRK fusion-positive cancers who developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.Significance: LOXO-195 abrogated resistance in TRK fusion-positive cancers that acquired kinase domain mutations, a shared liability with all existing TRK TKIs. This establishes a role for sequential treatment by demonstrating continued TRK dependence and validates a paradigm for the accelerated development of next-generation inhibitors against validated oncogenic targets. Cancer Discov; 7(9); 963-72. ©2017 AACR.See related commentary by Parikh and Corcoran, p. 934This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/genetics , Receptor, trkA/metabolism
8.
Cancer Res ; 76(16): 4841-4849, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27287719

ABSTRACT

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) suppress normal hematopoietic activity in part by enabling a pathogenic inflammatory milieu in the bone marrow. In this report, we show that elevation of angiopoietin-1 in myelodysplastic CD34(+) stem-like cells is associated with higher risk disease and reduced overall survival in MDS and AML patients. Increased angiopoietin-1 expression was associated with a transcriptomic signature similar to known MDS/AML stem-like cell profiles. In seeking a small-molecule inhibitor of this pathway, we discovered and validated pexmetinib (ARRY-614), an inhibitor of the angiopoietin-1 receptor Tie-2, which was also found to inhibit the proinflammatory kinase p38 MAPK (which is overactivated in MDS). Pexmetinib inhibited leukemic proliferation, prevented activation of downstream effector kinases, and abrogated the effects of TNFα on healthy hematopoietic stem cells. Notably, treatment of primary MDS specimens with this compound stimulated hematopoiesis. Our results provide preclinical proof of concept for pexmetinib as a Tie-2/p38 MAPK dual inhibitor applicable to the treatment of MDS/AML. Cancer Res; 76(16); 4841-9. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Indazoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/pathology , Receptor, TIE-2/antagonists & inhibitors , Urea/analogs & derivatives , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Angiopoietin-1/metabolism , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gene Knockdown Techniques , Humans , Male , Mice , Proportional Hazards Models , Urea/pharmacology
9.
Drug Metab Dispos ; 44(5): 741-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26961240

ABSTRACT

Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations/metabolism , Models, Molecular , NADPH-Ferrihemoprotein Reductase/metabolism
10.
Clin Pharmacol ; 7: 87-95, 2015.
Article in English | MEDLINE | ID: mdl-26491375

ABSTRACT

BACKGROUND: Pexmetinib (ARRY-614) is a dual inhibitor of p38 mitogen-activated protein kinase and Tie2 signaling pathways implicated in the pathogenesis of myelodysplastic syndromes. Previous clinical experience in a Phase I dose-escalation study of myelodysplastic syndrome patients using pexmetinib administered as neat powder-in-capsule (PIC) exhibited high variability in pharmacokinetics and excessive pill burden, prompting an effort to improve the formulation of pexmetinib. METHODS: A relative bioavailability assessment encompassed three parallel treatment cohorts of unique subjects comparing the two new formulations (12 subjects per cohort), a liquid oral suspension (LOS) and liquid-filled capsule (LFC) and the current clinical PIC formulation (six subjects) in a fasted state. The food-effect assessment was conducted as a crossover of the LOS and LFC formulations administered under fed and fasted conditions. Subjects were divided into two groups of equal size to evaluate potential period effects on the food-effect assessment. RESULTS: The geometric mean values of the total plasma exposures based upon area-under-the-curve to the last quantifiable sample (AUClast) of pexmetinib were approximately four- and twofold higher after administration of the LFC and LOS formulations, respectively, than after the PIC formulation, when the formulations were administered in the fasted state. When the LFC formulation was administered in the fed state, pexmetinib AUClast decreased by <5% compared with the fasted state. After administration of the LOS formulation in the fed state, pexmetinib AUClast was 34% greater than observed in the fasted state. CONCLUSION: These results suggest that the LFC formulation of pexmetinib may achieve greater exposures with lower doses due to the greater bioavailability compared to the PIC, and remain unaffected by coadministration with food.

11.
Appl Biochem Biotechnol ; 172(3): 1293-306, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166101

ABSTRACT

Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly(methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: (1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and (2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process.


Subject(s)
Bioreactors , Cytochrome P-450 CYP2C9/metabolism , Immobilized Proteins/metabolism , Cytochrome P-450 CYP2C9/chemistry , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Humans , Immobilized Proteins/chemistry , Inactivation, Metabolic/genetics , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/metabolism
12.
J Am Chem Soc ; 135(10): 3834-40, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23427827

ABSTRACT

Electron transfer in cytochrome P450 enzymes is a fundamental process for activity. It is difficult to measure electron transfer in these enzymes because under the conditions typically used they exist in a variety of states. Using nanotechnology-based techniques, gold conducting nanopillars were constructed in an indexed array. The P450 enzyme CYP2C9 was attached to each of these nanopillars, and conductivity measurements made using conducting probe atomic force microscopy under constant force conditions. The conductivity measurements were made on CYP2C9 alone and with bound substrates, a bound substrate-effector pair, and a bound inhibitor. Fitting of the data with the Poole-Frenkel model indicates a correlation between the barrier height for electron transfer and the ease of CYP2C9-mediated metabolism of the bound substrates, though the spin state of iron is not well correlated. The approach described here should have broad application to the measurement of electron transfer in P450 enzymes and other metalloenzymes.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Nanostructures/chemistry , Cytochrome P-450 Enzyme System/chemistry , Electron Transport , Molecular Structure , Substrate Specificity
13.
Antimicrob Agents Chemother ; 57(4): 1730-5, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23357773

ABSTRACT

Monte Carlo simulations (MCS) present a powerful tool to evaluate candidate regimens by determining the probability of target attainment. Although these assessments have traditionally incorporated variability in pharmacokinetic (PK) parameters and MICs, consideration of interstrain pharmacodynamic (PD) variability has been neglected. A population PK/PD model was developed for doripenem using murine thigh infection data based on 20 bacterial strains. PK data were fit to a linear two-compartment model with first-order input and elimination processes and an absorption lag time from a separate site (r(2) > 0.96). PK parameters were utilized to simulate free-drug profiles for various regimens in PD studies, from which the percentage of the dosing interval for which free-drug concentrations exceed the MIC of the targeted strain (%fT>MIC) was calculated. Doripenem PD was excellently described with Hill-type models (r(2) > 0.98); significant differences between mean PD estimates determined using a two-stage approach versus population analyses were not observed (P > 0.05); however, the variance in 50% effective concentration (EC50) and maximum effect (Emax) among strains was much greater using the two-stage approach. Even using the population approach, interstrain variability in EC50 (coefficient of variation expressed as a percentage [CV%] = 29.2%) and H (CV% = 46.1%) parameters was substantive, while the variability in Emax (CV% = 19.7%) was modest. This resulted in extensive variability in the range of %fT>MIC targets associated with stasis to those associated with a 2-log10 reduction in bacterial burden (CV% ∼ 50%). It appears that MCS, based on the assumption that PD variability is due to MIC alone, underestimates variability and may consequently underestimate treatment failures.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Carbapenems/pharmacokinetics , Microbial Sensitivity Tests/methods , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Carbapenems/pharmacology , Carbapenems/therapeutic use , Doripenem , Mice , Monte Carlo Method , Thigh/microbiology
14.
Forensic Sci Med Pathol ; 9(1): 73-6, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22915321

ABSTRACT

The antiepileptic, carbamazepine, is extensively metabolized via hepatic enzymes in the cytochrome P450 family and is therefore subject to a myriad of drug interactions. Concomitant administration with phenytoin enhances carbamazepine metabolism thus reducing serum concentrations and necessitating the use of a higher maintenance dose. Removal of phenytoin therapy in the absence of anticipatory dose adjustments and careful monitoring of serum concentrations may result in catastrophic outcomes. Reported herein are the events leading to the death of a 23-month old child who suffered a fatal carbamazepine overdose following withdrawal of phenytoin therapy.


Subject(s)
Anticonvulsants , Carbamazepine , Computer Simulation , Models, Biological , Phenytoin , Seizures/drug therapy , Anticonvulsants/administration & dosage , Anticonvulsants/blood , Anticonvulsants/pharmacokinetics , Anticonvulsants/poisoning , Autopsy , Biotransformation , Carbamazepine/administration & dosage , Carbamazepine/blood , Carbamazepine/pharmacokinetics , Carbamazepine/poisoning , Drug Administration Schedule , Drug Interactions , Drug Monitoring , Drug Overdose/diagnosis , Drug Overdose/etiology , Drug Overdose/pathology , Drug Therapy, Combination , Fatal Outcome , Forensic Toxicology , Humans , Infant , Male , Monte Carlo Method , Phenytoin/administration & dosage , Phenytoin/blood , Phenytoin/pharmacokinetics , Poisoning/diagnosis , Poisoning/etiology , Poisoning/pathology
15.
Nanotechnology ; 23(38): 385101, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22947619

ABSTRACT

This work describes an original and simple technique for protein immobilization into nanowells, fabricated using nanopatterned array fabrication methods, while ensuring the protein retains normal biological activity. Nanosphere lithography was used to fabricate a nanowell array with nanowells 100 nm in diameter with a periodicity of 500 nm. The base of the nanowells was gold and the surrounding material was silicon dioxide. The different surface chemistries of these materials were used to attach two different self-assembled monolayers (SAM) with different affinities for the protein used here, cytochrome P450 (P450). The nanowell SAM, a methyl terminated thiol, had high affinity for the P450. The surrounding SAM, a polyethylene glycol silane, displayed very little affinity toward the P450 isozyme CYP2C9, as demonstrated by x-ray photoelectron spectroscopy and surface plasmon resonance. The regularity of the nanopatterned array was examined by scanning electron microscopy and atomic force microscopy. P450-mediated metabolism experiments of known substrates demonstrated that the nanowell bound P450 enzyme exceeded its normal activity, as compared to P450 solutions, when bound to the methyl terminated self-assembled monolayer. The nanopatterned array chips bearing P450 display long term stability and give reproducible results making them potentially useful for high-throughput screening assays or as nanoelectrode arrays.


Subject(s)
Crystallization/methods , Cytochrome P-450 Enzyme System/chemistry , Molecular Imprinting/methods , Nanospheres/chemistry , Nanospheres/ultrastructure , Polystyrenes/chemistry , Protein Array Analysis/instrumentation , Cytochrome P-450 Enzyme System/ultrastructure , Equipment Design , Equipment Failure Analysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Photography/methods , Surface Properties
16.
J Phys Chem B ; 113(44): 14674-80, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19824615

ABSTRACT

In this paper, Mn(12)-based ordered honeycomb structures were successfully constructed from a simple solution casting process at high relative humidity through the modification of fatty acids to Mn(12) clusters. Mn(12)-fatty acid complexes maintain typical features of a single-molecule magnet as confirmed by IR spectra and magnetization hysteresis studies. Investigation of the effects of concentration, velocity of humid airflow, solvent, substrate, and alkyl chain length of the Mn(12) complex on the morphology of the honeycomb structures demonstrated wide generality and high reproducibility of the formation of Mn(12)-based self-organized honeycomb-patterned films. Both two-dimensional and three-dimensional honeycomb structures were obtained by adjusting the concentration of the complex solution. Mn(12)-based, honeycomb-patterned films maintain a paramagnetic response at room temperature, and thus give rise to a spatially distributed magnetic pattern on the substrate, which can be imaged by magnetic force microscopy. Importantly, the single-molecule magnetic property of the Mn(12) complex at low temperature is well maintained in the honeycomb-patterned film, which represents a promising outlook for high-density information storage and quantum computing applications.


Subject(s)
Fatty Acids/chemistry , Magnetics , Manganese/chemistry , Molecular Conformation , Spectrophotometry, Infrared , Vapor Pressure
17.
Drug Metab Lett ; 3(2): 70-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19601867

ABSTRACT

Species and tissue differences in the activity of three major classes of esterases, carboxylesterase (CE), butyrylcholinesterase (BChE) and paraoxonase (PON), were studied. Substantial species differences in activity of these esterases were observed between the mouse, rat, dog monkey and human. Such species differences must be considered when using these preclinical species to optimize the pharmacokinetic properties of ester compounds intended for human use.


Subject(s)
Aryldialkylphosphatase/metabolism , Butyrylcholinesterase/metabolism , Carboxylesterase/metabolism , Animals , Dogs , Drug Design , Drug Evaluation, Preclinical/methods , Humans , Macaca fascicularis , Mice , Models, Animal , Rats , Species Specificity
18.
Drug Metab Dispos ; 37(4): 892-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19171677

ABSTRACT

Cytochrome P450 (P450) enzymes typically require the presence of at least cytochrome P450 reductase (CPR) and NADPH to carry out the metabolism of xenobiotics. To address whether the need for redox transfer proteins and the NADPH cofactor protein could be obviated, CYP2C9 was bonded to a gold electrode through an 11-mercaptoundecanoic acid and octanethiol self-assembled monolayer (SAM) through which a current could be applied. Cyclic voltammetry demonstrated direct electrochemistry of the CYP2C9 enzyme bonded to the electrode and fast electron transfer between the heme iron and the gold electrode. To determine whether this system could metabolize warfarin analogous to microsomal or expressed enzyme systems containing CYP2C9, warfarin was incubated with the CYP2C9-SAM-gold electrode and a controlled potential was applied. The expected 7-hydroxywarfarin metabolite was observed, analogous to expressed CYP2C9 systems, wherein this is the predominant metabolite. Current-concentration data generated with increasing concentrations of warfarin were used to determine the Michaelis-Menten constant (K(m)) for the hydroxylation of warfarin (3 microM), which is in good agreement with previous literature regarding K(m) values for this reaction. In summary, the CYP2C9-SAM-gold electrode system was able to carry out the metabolism of warfarin only after application of an electrical potential, but in the absence of either CPR or NADPH. Furthermore, this system may provide a unique platform for both studying P450 enzyme electrochemistry and as a bioreactor to produce metabolites without the need for expensive redox transfer proteins and cofactors.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Electrochemistry , Electrodes , Warfarin/pharmacokinetics , Catalysis , Cytochrome P-450 CYP2C9 , Gold , Hydroxylation
SELECTION OF CITATIONS
SEARCH DETAIL
...