Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Oncology ; 101(7): 446-456, 2023.
Article in English | MEDLINE | ID: mdl-37399803

ABSTRACT

INTRODUCTION: Neuroblastoma is one of the most common childhood cancers with one of the lowest survival rates, accounting for 15% of childhood cancer mortality. Approximately half of children treated for high-risk neuroblastoma will relapse following remission, while another 15% of patients do not respond to initial treatment. External beam radiation is infrequently used for treatment of pediatric cancer such as neuroblastoma, typically reserved for palliative care in patients with aggressive metastatic disease who fail to respond to alternative treatments. Understanding effects of radiation on neuroblastoma cells could improve efficacy of this final means of therapy to decrease tumor burden and stabilize the disease. METHODS: In this study, we found that two microRNAs with opposite functions were expressed in two neuroblastoma cell lines with marked differences in radiosensitivity. Clonogenic assays were used to evaluate the radiation responses for these 2 cell lines, designated SK-N-AS and SK-N-DZ; cells were then irradiated at doses that cause 90% cell killing based on clonogenic assay and their RNA isolated and subjected to microarray analysis. In addition, cells were transfected with pre-miRNA constructs that led to overexpression of microRNAs miR-34a and miR-1228 to determine possible microRNA regulation of radiation response. RESULTS: Statistically significant differences were detected for expression of several thousand genes when the 2 cell lines were compared with each other. In comparison, radiation exposure resulted in only minor gene expression differences of less than 2-fold at the 1 h postirradiation timepoint in both cell lines. Overexpression of miR-34a and miR-1228 in either cell line did not alter this outcome. DISCUSSION: While these two neuroblastoma cell lines are phenotypically diverse and gene expression differences between them are extensive, we observed that the regulation of gene expression in both cell lines is in a stable equilibrium at early timepoints after exposure to ionizing radiation.


Subject(s)
MicroRNAs , Neuroblastoma , Child , Humans , Cell Line, Tumor , Neoplasm Recurrence, Local/genetics , MicroRNAs/genetics , Neuroblastoma/genetics , Neuroblastoma/radiotherapy , Neuroblastoma/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic
2.
Sci Rep ; 13(1): 7806, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179410

ABSTRACT

Biobanks containing formalin-fixed, paraffin-embedded (FFPE) tissues from animals and human atomic-bomb survivors exposed to radioactive particulates remain a vital resource for understanding the molecular effects of radiation exposure. These samples are often decades old and prepared using harsh fixation processes which limit sample imaging options. Optical imaging of hematoxylin and eosin (H&E) stained tissues may be the only feasible processing option, however, H&E images provide no information about radioactive microparticles or radioactive history. Synchrotron X-ray fluorescence microscopy (XFM) is a robust, non-destructive, semi-quantitative technique for elemental mapping and identifying candidate chemical element biomarkers in FFPE tissues. Still, XFM has never been used to uncover distribution of formerly radioactive micro-particulates in FFPE canine specimens collected more than 30 years ago. In this work, we demonstrate the first use of low-, medium-, and high-resolution XFM to generate 2D elemental maps of ~ 35-year-old, canine FFPE lung and lymph node specimens stored in the Northwestern University Radiobiology Archive documenting distribution of formerly radioactive micro-particulates. Additionally, we use XFM to identify individual microparticles and detect daughter products of radioactive decay. The results of this proof-of-principle study support the use of XFM to map chemical element composition in historic FFPE specimens and conduct radioactive micro-particulate forensics.


Subject(s)
Lung , Synchrotrons , Humans , Animals , Dogs , Adult , Tissue Fixation , X-Rays , Microscopy, Fluorescence/methods , Paraffin Embedding , Formaldehyde/chemistry
3.
Cancer Causes Control ; 34(7): 621-624, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37081154

ABSTRACT

Engagement of community participation is an innovative driver of modern research. However, to benefit the communities being studied, it is imperative to continuously evaluate ethical considerations, the relationship dynamic between researchers and community members, and the responsiveness of research teams to the needs and preferences of communities. Northwestern University's Center for Health Equity Transformation founded a community scientist program in 2018 that implemented a study using the Community-Based Participatory Research (CBPR) model. This project is an ongoing study of heavy metal exposure by geographic location in Chicago. Community scientists from various backgrounds, communities, and organizations formed an advisory panel, partnering with the cancer research team. This commentary describes lessons learned in structuring meaningful community involvement and benefit in CBPR, with a focus on three lessons learned that relate to ethics, relationships, and responsiveness. Our findings lay new groundwork for iteratively shaping best practices in CBPR.


Subject(s)
Community-Based Participatory Research , Physicians , Humans , Research Design , Chicago
4.
iScience ; 25(12): 105546, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36465103

ABSTRACT

During evolution, humans are acclimatized to the stresses of natural radiation and circadian rhythmicity. Radiosensitivity of mammalian cells varies in the circadian period and adaptive radioprotection can be induced by pre-exposure to low-level radiation (LDR). It is unclear, however, if clock proteins participate in signaling LDR radioprotection. Herein, we demonstrate that radiosensitivity is increased in mice with the deficient Period 2 gene (Per2def) due to impaired DNA repair and mitochondrial function in progenitor bone marrow hematopoietic stem cells and monocytes. Per2 induction and radioprotection are also identified in LDR-treated Per2wt mouse cells and in human skin (HK18) and breast (MCF-10A) epithelial cells. LDR-boosted PER2 interacts with pGSK3ß(S9) which activates ß-catenin and the LEF/TCF mediated gene transcription including Per2 and genes involved in DNA repair and mitochondrial functions. This study demonstrates that PER2 plays an active role in LDR adaptive radioprotection via PER2/pGSK3ß/ß-catenin/Per2 loop, a potential target for protecting normal cells from radiation injury.

5.
Radiat Environ Biophys ; 61(4): 507-543, 2022 11.
Article in English | MEDLINE | ID: mdl-36241855

ABSTRACT

Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.


Subject(s)
Radiation Exposure , Radiation Injuries , Radiation Protection , Animals , Humans , Radiation Dosage , Radiation, Ionizing , Radiobiology
6.
Article in English | MEDLINE | ID: mdl-36155139

ABSTRACT

Ionizing radiation is omnipresent and unavoidable on Earth; nevertheless, the range of doses and modes of radiation delivery that represent health risks remain controversial. Radiation protection policy for civilians in US is set at 1 mSv per year. Average persons from contemporary populations are exposed to several hundred milliSieverts (mSv) over their lifetimes from both natural and human made sources such as radon, cosmic rays, CT-scans (20-50 mSv partial body exposure per scan), etc. Health risks associated with these and larger exposures are focus of many epidemiological studies, but uncertainties of these estimates coupled with individual and environmental variation make it is prudent to attempt to use animal models and tightly controlled experimental conditions to supplement our evaluation of radiation risk question. Data on 11,528 of rodents of both genders exposed to x-ray or gamma-ray radiation in facilities in US and Europe were used for this analysis; animal mortality data argue that fractionated radiation exposures have about 2 fold less risk per Gray than acute radiation exposures in the range of doses between 0.25 and 4 Gy.


Subject(s)
Radiation Exposure , Radiation Protection , Radon , Animals , Female , Humans , Male , Radiation Dosage , Radiation Exposure/adverse effects , Radiation, Ionizing , Radon/analysis , Rodentia
7.
J Radiol Prot ; 42(3)2022 07 21.
Article in English | MEDLINE | ID: mdl-35785774

ABSTRACT

The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarises the main findings of SC 6-12 described in the recently published NCRP Commentary No. 31, 'Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides'. The Commentary examines the extent to which dose estimates for the brain could be improved through increased realism in the biokinetic and dosimetric models currently used in radiation protection and epidemiology. A limitation of most of the current element-specific systemic biokinetic models is the absence of brain as an explicitly identified source region with its unique rate(s) of exchange of the element with blood. The brain is usually included in a large source region calledOtherthat contains all tissues not considered major repositories for the element. In effect, all tissues inOtherare assigned a common set of exchange rates with blood. A limitation of current dosimetric models for internal emitters is that activity in the brain is treated as a well-mixed pool, although more sophisticated models allowing consideration of different activity concentrations in different regions of the brain have been proposed. Case studies for 18 internal emitters indicate that brain dose estimates using current dosimetric models may change substantially (by a factor of 5 or more), or may change only modestly, by addition of a sub-model of the brain in the biokinetic model, with transfer rates based on results of published biokinetic studies and autopsy data for the element of interest. As a starting place for improving brain dose estimates, development of biokinetic models with explicit sub-models of the brain (when sufficient biokinetic data are available) is underway for radionuclides frequently encountered in radiation epidemiology. A longer-term goal is development of coordinated biokinetic and dosimetric models that address the distribution of major radioelements among radiosensitive brain tissues.


Subject(s)
Radiation Protection , Radioisotopes , Brain , Kinetics , Models, Biological , Radiation Dosage , Radiometry/methods
8.
Metallomics ; 14(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35751648

ABSTRACT

Scanning X-ray fluorescence (XRF) tomography provides powerful characterization capabilities in evaluating elemental distribution and differentiating their inter- and intra-cellular interactions in a three-dimensional (3D) space. Scanning XRF tomography encounters practical challenges from the sample itself, where the range of rotation angles is limited by geometric constraints, involving sample substrates or nearby features either blocking or converging into the field of view. This study aims to develop a reliable and efficient workflow that can (1) expand the experimental window for nanoscale tomographic analysis of local areas of interest within a laterally extended specimen, and (2) bridge 3D analysis at micrometer and nanoscales on the same specimen. We demonstrate the workflow using a specimen of HeLa cells exposed to iron oxide core and titanium dioxide shell (Fe3O4/TiO2) nanocomposites. The workflow utilizes iterative and multiscale XRF data collection with intermediate sample processing by focused ion beam (FIB) sample preparation between measurements at different length scales. Initial assessment combined with precise sample manipulation via FIB allows direct removal of sample regions that are obstacles to both incident X-ray beam and outgoing XRF signals, which considerably improves the subsequent nanoscale tomography analysis. This multiscale analysis workflow has advanced bio-nanotechnology studies by providing deep insights into the interaction between nanocomposites and single cells at a subcellular level as well as statistical assessments from measuring a population of cells.


Subject(s)
Nanoparticles , Fluorescence , HeLa Cells , Humans , Workflow , X-Rays
9.
Int J Radiat Biol ; 98(3): 267-275, 2022.
Article in English | MEDLINE | ID: mdl-35030065

ABSTRACT

PURPOSE: This review is focused on radium and radionuclides in its decay chain in honor of Marie Curie, who discovered this element. MATERIALS AND METHODS: We conglomerated current knowledge regarding radium and its history predating our present understanding of this radionuclide. RESULTS: An overview of the properties of radium and its dose assessment is shown followed by discussions about both the negative detrimental and positive therapeutic applications of radium with this history and its evolution reflecting current innovations in medical science. CONCLUSIONS: We hope to remind all those who are interested in the progress of science about the vagaries of the process of scientific discovery. In addition, we raise the interesting question of whether Marie Curie's initial success was in part possible due to her tight alignment with her husband Pierre Curie who pushed the work along.


Subject(s)
Radiology , Radium , Female , France , History, 19th Century , History, 20th Century , Humans , Radiology/history
10.
Int J Radiat Biol ; 98(5): 843-854, 2022.
Article in English | MEDLINE | ID: mdl-34606416

ABSTRACT

PURPOSE: In a nuclear or radiological event, an early diagnostic or prognostic tool is needed to distinguish unexposed from low- and highly exposed individuals with the latter requiring early and intensive medical care. Radiation-induced gene expression (GE) changes observed within hours and days after irradiation have shown potential to serve as biomarkers for either dose reconstruction (retrospective dosimetry) or the prediction of consecutively occurring acute or chronic health effects. The advantage of GE markers lies in their capability for early (1-3 days after irradiation), high-throughput, and point-of-care (POC) diagnosis required for the prediction of the acute radiation syndrome (ARS). CONCLUSIONS: As a key session of the ConRad conference in 2021, experts from different institutions were invited to provide state-of-the-art information on a range of topics including: (1) Biodosimetry: What are the current efforts to enhance the applicability of this method to perform retrospective biodosimetry? (2) Effect prediction: Can we apply radiation-induced GE changes for prediction of acute health effects as an approach, complementary to and integrating retrospective dose estimation? (3) High-throughput and point-of-care diagnostics: What are the current developments to make the GE approach applicable as a high-throughput as well as a POC diagnostic platform? (4) Low level radiation: What is the lowest dose range where GE can be used for biodosimetry purposes? (5) Methodological considerations: Different aspects of radiation-induced GE related to more detailed analysis of exons, transcripts and next-generation sequencing (NGS) were reported.


Subject(s)
Acute Radiation Syndrome , Radiometry , Acute Radiation Syndrome/genetics , Biomarkers , Gene Expression , Humans , Radiometry/methods , Retrospective Studies
11.
J Appl Clin Med Phys ; 23 Suppl 1: e13743, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36705246

ABSTRACT

In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.


Subject(s)
Physicians , Radiobiology , Humans , United States , Workforce
14.
Cancer Nanotechnol ; 12(1): 12, 2021.
Article in English | MEDLINE | ID: mdl-34777621

ABSTRACT

BACKGROUND: Neuroblastoma is the most common extracranial solid malignancy in childhood which, despite the current progress in radiotherapy and chemotherapy protocols, still has a high mortality rate in high risk tumors. Nanomedicine offers exciting and unexploited opportunities to overcome the shortcomings of conventional medicine. The photocatalytic properties of Fe3O4 core-TiO2 shell nanocomposites and their potential for cell specific targeting suggest that nanoconstructs produced using Fe3O4 core-TiO2 shell nanocomposites could be used to enhance radiation effects in neuroblastoma. In this study, we evaluated bare, metaiodobenzylguanidine (MIBG) and 3,4-Dihydroxyphenylacetic acid (DOPAC) coated Fe3O4@TiO2 as potential radiosensitizers for neuroblastoma in vitro. RESULTS: The uptake of bare and MIBG coated nanocomposites modestly sensitized neuroblastoma cells to ionizing radiation. Conversely, cells exposed to DOPAC coated nanocomposites exhibited a five-fold enhanced sensitivity to radiation, increased numbers of radiation induced DNA double-strand breaks, and apoptotic cell death. The addition of a peptide mimic of the epidermal growth factor (EGF) to nanoconjugates coated with MIBG altered their intracellular distribution. Cryo X-ray fluorescence microscopy tomography of frozen hydrated cells treated with these nanoconjugates revealed cytoplasmic as well as nuclear distribution of the nanoconstructs. CONCLUSIONS: The intracellular distribution pattern of different nanoconjugates used in this study was different for different nanoconjugate surface molecules. Cells exposed to DOPAC covered nanoconjugates showed the smallest nanoconjugate uptake, with the most prominent pattern of large intracellular aggregates. Interestingly, cells treated with this nanoconjugate also showed the most pronounced radiosensitization effect in combination with the external beam x-ray irradiation. Further studies are necessary to evaluate mechanistic basis for this increased radiosensitization effect. Preliminary studies with the nanoparticles carrying an EGF mimicking peptide showed that this approach to targeting could perhaps be combined with a different approach to radiosensitization - use of nanoconjugates in combination with the radioactive iodine. Much additional work will be necessary in order to evaluate possible benefits of targeted nanoconjugates carrying radionuclides. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12645-021-00081-z.

15.
Front Public Health ; 9: 711506, 2021.
Article in English | MEDLINE | ID: mdl-34490194

ABSTRACT

Introduction: TheraSphere® microspheres containing yttrium 90Y are among many radioembolization agents used clinically to reduce liver tumor burden, and their effects on cancer volume reduction are well-established. At the same time, concerns about off target tissue injury often limit their use. Deeper investigation into tissue distribution and long-term impact of these microspheres could inform us about additional ways to use them in practice. Methods: Healthy rat liver and rabbit liver tumor samples from animals treated with TheraSpheres were sectioned and their elemental maps were generated by X-ray fluorescence microscopy (XFM) at the Advanced Photon Source (APS) synchrotron at Argonne National Laboratory (ANL). Results: Elemental imaging allowed us to identify the presence and distribution of TheraSpheres in animal tissues without the need for additional sample manipulation or staining. Ionizing radiation produced by 90Y radioactive contaminants present in these microspheres makes processing TheraSphere treated samples complex. Accumulation of microspheres in macrophages was observed. Conclusions: This is the first study that used XFM to evaluate the location of microspheres and radionuclides in animal liver and tumor samples introduced through radioembolization. XFM has shown promise in expanding our understanding of radioembolization and could be used for investigation of human patient samples in the future.


Subject(s)
Carcinoma, Hepatocellular , Embolization, Therapeutic , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/radiotherapy , Humans , Liver Neoplasms/radiotherapy , Microscopy, Fluorescence , Rabbits , X-Rays , Yttrium Radioisotopes
16.
Cancers (Basel) ; 13(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34503306

ABSTRACT

Research in cancer nanotechnology is entering its third decade, and the need to study interactions between nanomaterials and cells remains urgent. Heterogeneity of nanoparticle uptake by different cells and subcellular compartments represent the greatest obstacles to a full understanding of the entire spectrum of nanomaterials' effects. In this work, we used flow cytometry to evaluate changes in cell cycle associated with non-targeted nanocomposite uptake by individual cells and cell populations. Analogous single cell and cell population changes in nanocomposite uptake were explored by X-ray fluorescence microscopy (XFM). Very few nanoparticles are visible by optical imaging without labeling, but labeling increases nanoparticle complexity and the risk of modified cellular uptake. XFM can be used to evaluate heterogeneity of nanocomposite uptake by directly imaging the metal atoms present in the metal-oxide nanocomposites under investigation. While XFM mapping has been performed iteratively in 2D with the same sample at different resolutions, this study is the first example of serial tomographic imaging at two different resolutions. A cluster of cells exposed to non-targeted nanocomposites was imaged with a micron-sized beam in 3D. Next, the sample was sectioned for immunohistochemistry as well as a high resolution "zoomed in" X-ray fluorescence (XRF) tomography with 80 nm beam spot size. Multiscale XRF tomography will revolutionize our ability to explore cell-to-cell differences in nanomaterial uptake.

17.
ACS Appl Mater Interfaces ; 13(33): 39042-39054, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34375073

ABSTRACT

In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.


Subject(s)
Biocompatible Materials/chemistry , Contrast Media/chemistry , Iron/chemistry , Manganese/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Polystyrenes/chemistry , Animals , Biocompatible Materials/pharmacokinetics , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , Contrast Media/pharmacokinetics , Cross-Linking Reagents/chemistry , Humans , Magnetic Resonance Imaging , Mice, Inbred BALB C , Multimodal Imaging , Porosity , Spectrometry, X-Ray Emission , Tissue Distribution
18.
Sci Transl Med ; 13(584)2021 03 10.
Article in English | MEDLINE | ID: mdl-33692132

ABSTRACT

Glioblastoma (GBM) is one of the most difficult cancers to effectively treat, in part because of the lack of precision therapies and limited therapeutic access to intracranial tumor sites due to the presence of the blood-brain and blood-tumor barriers. We have developed a precision medicine approach for GBM treatment that involves the use of brain-penetrant RNA interference-based spherical nucleic acids (SNAs), which consist of gold nanoparticle cores covalently conjugated with radially oriented and densely packed small interfering RNA (siRNA) oligonucleotides. On the basis of previous preclinical evaluation, we conducted toxicology and toxicokinetic studies in nonhuman primates and a single-arm, open-label phase 0 first-in-human trial (NCT03020017) to determine safety, pharmacokinetics, intratumoral accumulation and gene-suppressive activity of systemically administered SNAs carrying siRNA specific for the GBM oncogene Bcl2Like12 (Bcl2L12). Patients with recurrent GBM were treated with intravenous administration of siBcl2L12-SNAs (drug moniker: NU-0129), at a dose corresponding to 1/50th of the no-observed-adverse-event level, followed by tumor resection. Safety assessment revealed no grade 4 or 5 treatment-related toxicities. Inductively coupled plasma mass spectrometry, x-ray fluorescence microscopy, and silver staining of resected GBM tissue demonstrated that intravenously administered SNAs reached patient tumors, with gold enrichment observed in the tumor-associated endothelium, macrophages, and tumor cells. NU-0129 uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein expression, as indicated by comparison of matched primary tumor and NU-0129-treated recurrent tumor. Our results establish SNA nanoconjugates as a potential brain-penetrant precision medicine approach for the systemic treatment of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Metal Nanoparticles , Nucleic Acids , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioblastoma/genetics , Glioblastoma/therapy , Gold , Humans , Muscle Proteins/metabolism , Neoplasm Recurrence, Local , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference
19.
PLoS One ; 16(3): e0231511, 2021.
Article in English | MEDLINE | ID: mdl-33657093

ABSTRACT

The Department of Energy conduced ten large-scale neutron irradiation experiments at Argonne National Laboratory between 1972 and 1989. Using a new approach to utilize experimental controls to determine whether a cross comparison between experiments was appropriate, we amalgamated data on neutron exposures to discover that fractionation significantly improved overall survival. A more detailed investigation showed that fractionation only had a significant impact on the death hazard for animals that died from solid tumors, but did not significantly impact any other causes of death. Additionally, we compared the effects of sex, age first irradiated, and radiation fractionation on neutron irradiated mice versus cobalt 60 gamma irradiated mice and found that solid tumors were the most common cause of death in neutron irradiated mice, while lymphomas were the dominant cause of death in gamma irradiated mice. Most animals in this study were irradiated before 150 days of age but a subset of mice was first exposed to gamma or neutron irradiation over 500 days of age. Advanced age played a significant role in decreasing the death hazard for neutron irradiated mice, but not for gamma irradiated mice. Mice that were 500 days old before their first exposures to neutrons began dying later than both sham irradiated or gamma irradiated mice.


Subject(s)
Cobalt Radioisotopes/adverse effects , Gamma Rays/adverse effects , Neoplasms, Radiation-Induced/etiology , Neutrons/adverse effects , Animals , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...