Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(21): 5798-5811, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37750351

ABSTRACT

Evolutionary novelties-derived traits without clear homology found in the ancestors of a lineage-may promote ecological specialization and facilitate adaptive radiations. Examples for such novelties include the wings of bats, pharyngeal jaws of cichlids and flowers of angiosperms. Belonoid fishes (flying fishes, halfbeaks and needlefishes) feature an astonishing diversity of extremely elongated jaw phenotypes with undetermined evolutionary origins. We investigate the development of elongated jaws in a halfbeak (Dermogenys pusilla) and a needlefish (Xenentodon cancila) using morphometrics, transcriptomics and in situ hybridization. We confirm that these fishes' elongated jaws are composed of distinct base and novel 'extension' portions. These extensions are morphologically unique to belonoids, and we describe the growth dynamics of both bases and extensions throughout early development in both studied species. From transcriptomic profiling, we deduce that jaw extension outgrowth is guided by populations of multipotent cells originating from the anterior tip of the dentary. These cells are shielded from differentiation, but proliferate and migrate anteriorly during the extension's allometric growth phase. Cells left behind at the tip leave the shielded zone and undergo differentiation into osteoblast-like cells, which deposit extracellular matrix with both bone and cartilage characteristics that mineralizes and thereby provides rigidity. Such bone has characteristics akin to histological observations on the elongated 'kype' process on lower jaws of male salmon, which may hint at common conserved regulatory underpinnings. Future studies will evaluate the molecular pathways that govern the anterior migration and proliferation of these multipotent cells underlying the belonoids' evolutionary novel jaw extensions.

2.
Dev Dyn ; 252(5): 553-588, 2023 05.
Article in English | MEDLINE | ID: mdl-36351887

ABSTRACT

BACKGROUND: Syngnathids are a highly derived and diverse fish clade comprising the pipefishes, pipe-horses, and seahorses. They are characterized by a plethora of iconic traits that increasingly capture the attention of biologists, including geneticists, ecologists, and developmental biologists. The current understanding of the origins of their derived body plan is, however, hampered by incomplete and limited descriptions of the early syngnathid ontogeny. RESULTS: We provide a comprehensive description of the development of Nerophis ophidion, Syngnathus typhle, and Hippocampus erectus from early cleavage stages to release from the male brooding organ and beyond, including juvenile development. We comparatively describe skeletogenesis with a particular focus on dermal bony plates, the snout-like jaw morphology, and appendages. CONCLUSIONS: This most comprehensive and detailed account of syngnathid development to date suggests that convergent phenotypes (e.g., reduction and loss of the caudal fins), likely arose by distinct ontogenetic means in pipefishes and seahorses. Comparison of the ontogenetic trajectories of S. typhle and H. erectus provides indications that characteristic features of the seahorse body plan result from developmental truncation. Altogether, this work provides a valuable resource and framework for future research to understand the evolution of the outlandish syngnathid morphology from a developmental perspective.


Subject(s)
Smegmamorpha , Animals , Male , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Fishes/genetics , Face
3.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34230098

ABSTRACT

With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny-fin elements across fishes.


Subject(s)
Animal Fins/metabolism , Bone Morphogenetic Proteins/metabolism , Cichlids/metabolism , Fish Proteins/metabolism , Hedgehog Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Animal Fins/growth & development , Animals , Biological Evolution , Body Patterning , Bone Morphogenetic Proteins/genetics , Cichlids/classification , Cichlids/genetics , Cichlids/growth & development , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Phylogeny , Signal Transduction , Spine/growth & development , Spine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nature ; 590(7845): 284-289, 2021 02.
Article in English | MEDLINE | ID: mdl-33461212

ABSTRACT

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Fishes/genetics , Gait/genetics , Genome/genetics , Lung , Vertebrates/genetics , Air , Animal Fins/anatomy & histology , Animals , Bayes Theorem , Chromosomes/genetics , Extremities/anatomy & histology , Female , Fishes/physiology , Gene Expression Regulation, Developmental , Genes, Homeobox/genetics , Genomics , Humans , Long Interspersed Nucleotide Elements/genetics , Lung/anatomy & histology , Lung/physiology , Mice , Molecular Sequence Annotation , Phylogeny , Respiration , Smell/physiology , Synteny , Vertebrates/physiology , Vomeronasal Organ/anatomy & histology
5.
Sci Adv ; 6(34): eabc3510, 2020 08.
Article in English | MEDLINE | ID: mdl-32875118

ABSTRACT

How the hand and digits originated from fish fins during the Devonian fin-to-limb transition remains unsolved. Controversy in this conundrum stems from the scarcity of ontogenetic data from extant lobe-finned fishes. We report the patterning of an autopod-like domain by hoxa13 during fin development of the Australian lungfish, the most closely related extant fish relative of tetrapods. Differences from tetrapod limbs include the absence of digit-specific expansion of hoxd13 and hand2 and distal limitation of alx4 and pax9, which potentially evolved through an enhanced response to shh signaling in limbs. These developmental patterns indicate that the digit program originated in postaxial fin radials and later expanded anteriorly inside of a preexisting autopod-like domain during the evolution of limbs. Our findings provide a genetic framework for the transition of fins into limbs that supports the significance of classical models proposing a bending of the tetrapod metapterygial axis.

6.
Nat Ecol Evol ; 4(6): 841-852, 2020 06.
Article in English | MEDLINE | ID: mdl-32231327

ABSTRACT

Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random.


Subject(s)
Fishes/genetics , Genome , Animals , Chromosomes , Phylogeny , Polyploidy
7.
Dev Biol ; 456(2): 138-144, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31445923

ABSTRACT

The expression and function of hox genes have played a key role in the debate on the evolution of limbs from fins. As an early branching tetrapod lineage, lissamphibians may provide information on the origin of the limb's hox domains and particularly how the plesiomorphic tetrapod pattern compares to the hox pattern present in fish fins. Here, we comparatively investigated the expression of hox genes in the developing limbs of axolotl and Xenopus laevis as well as in the fins of the direct developing cichlid Astatotilapia burtoni. In contrast to axolotl, which has only very low digital expression of hoxd11, Xenopus limbs recapitulate the reverse collinear hoxd expression pattern known from amniotes with clearly defined proximal and distal hoxd11 expression domains. For hoxa genes, we observe that in Xenopus limbs, as in axolotl, a clear distal domain of hoxa11 expression is present, although in the presence of a hoxa11 antisense transcript. Investigation of fins reveals the presence of hoxa11 antisense transcription in the developing fin rays in a domain similar to that of hoxa13 and overlapping with hoxa11 sense transcription. Our results indicate that full exclusion of hoxa11 from the autopod only became firmly established in amniotes. The distal antisense transcription of hoxa11, however, appears to predate the evolution of the limb, but likely originated without the concurrent implementation of the transcriptional suppression mechanism that causes mutually exclusive hoxa11 and hoxa13 domains in amniotes.


Subject(s)
Animal Fins/metabolism , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Ambystoma mexicanum/genetics , Animals , Biological Evolution , Cichlids/genetics , Extremities/embryology , Extremities/pathology , Genes, Homeobox/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization , Organogenesis , Transcription Factors/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics
8.
Mol Biol Evol ; 36(11): 2498-2511, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31397871

ABSTRACT

Cichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.

9.
Science ; 362(6413): 457-460, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30361373

ABSTRACT

The color patterns of African cichlid fishes provide notable examples of phenotypic convergence. Across the more than 1200 East African rift lake species, melanic horizontal stripes have evolved numerous times. We discovered that regulatory changes of the gene agouti-related peptide 2 (agrp2) act as molecular switches controlling this evolutionarily labile phenotype. Reduced agrp2 expression is convergently associated with the presence of stripe patterns across species flocks. However, cis-regulatory mutations are not predictive of stripes across radiations, suggesting independent regulatory mechanisms. Genetic mapping confirms the link between the agrp2 locus and stripe patterns. The crucial role of agrp2 is further supported by a CRISPR-Cas9 knockout that reconstitutes stripes in a nonstriped cichlid. Thus, we unveil how a single gene affects the convergent evolution of a complex color pattern.


Subject(s)
Agouti-Related Protein/physiology , Biological Evolution , Cichlids/anatomy & histology , Cichlids/physiology , Skin Pigmentation , Agouti-Related Protein/genetics , Animals , CRISPR-Cas Systems , Chromosome Mapping , Cichlids/genetics , Gene Knockout Techniques , Genetic Loci , Mutation , Skin Pigmentation/genetics
10.
BMC Dev Biol ; 18(1): 8, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29614958

ABSTRACT

BACKGROUND: The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on "direct-developing" amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are "indirect-developing" organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. RESULTS: Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely "direct" mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. CONCLUSIONS: As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between "direct" and "indirect" developing actinopterygians using a comparison between zebrafish and A. burtoni development.


Subject(s)
Bone and Bones/anatomy & histology , Cichlids/anatomy & histology , Cichlids/embryology , Models, Biological , Animal Fins/anatomy & histology , Animal Fins/embryology , Animal Scales/anatomy & histology , Animal Scales/embryology , Animals , Biological Evolution , Embryonic Development , Osteogenesis
11.
Mol Biol Evol ; 34(10): 2469-2485, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28444297

ABSTRACT

Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted toward shorter wavelengths compared with the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution.


Subject(s)
Cichlids/genetics , Eye Proteins/genetics , Animals , Biological Evolution , Cichlids/metabolism , Evolution, Molecular , Eye Proteins/metabolism , Gene Expression/genetics , Genetic Speciation , Genetic Variation/genetics , Lakes , Opsins/genetics , Photoreceptor Cells, Vertebrate/physiology , Phylogeny , Sequence Analysis, DNA/methods , Species Specificity
12.
Nature ; 540(7633): 395-399, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974754

ABSTRACT

Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a 'pelvic fin-loss' phenotype similar to that of seahorses.


Subject(s)
Biological Evolution , Fish Proteins/genetics , Genome/genetics , Smegmamorpha/anatomy & histology , Smegmamorpha/genetics , Animal Fins/anatomy & histology , Animal Fins/metabolism , Animals , Conserved Sequence/genetics , Fish Proteins/deficiency , Gene Deletion , Genomics , Hindlimb/anatomy & histology , Hindlimb/metabolism , Male , Molecular Sequence Annotation , Multigene Family/genetics , Mutation Rate , Phylogeny , Reproduction/physiology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , Time Factors , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
13.
Genes Dev ; 30(10): 1172-86, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198226

ABSTRACT

During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.


Subject(s)
Body Patterning/genetics , Extremities/embryology , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Homeodomain Proteins/metabolism , Protein Domains/genetics , Animals , Chick Embryo , Enhancer Elements, Genetic/genetics , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , Mice , Mice, Transgenic , Mutation , Protein Binding/genetics
14.
Front Zool ; 12: 23, 2015.
Article in English | MEDLINE | ID: mdl-26379756

ABSTRACT

The earliest tetrapods had hands and feet with up to eight digits but this number was subsequently reduced during evolution. It was assumed that lineages with more than five digits no longer exist but investigations of clawed-frogs now indicate that they posses a rudimentary or atavistic sixth digit in their hindlimb. A recent reevaluation of the stem tetrapod Ichthyostega predicts that its seven digits evolved from two different types of ancestral fin radials, pre-axial and post-axial. In this context we now ask the question, should we consider a pre-axial origin of the thumb as reason for its unique genetic signature?

15.
Mech Dev ; 138 Pt 2: 64-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26238020

ABSTRACT

The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan.


Subject(s)
Body Patterning/genetics , Body Patterning/physiology , Spine/physiology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/physiology , Biological Evolution , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Mice , Motor Neurons/physiology
16.
PLoS Biol ; 12(1): e1001773, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24465181

ABSTRACT

The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies.


Subject(s)
Animal Fins/embryology , Extremities/embryology , Homeodomain Proteins/genetics , Tetraodontiformes/genetics , Zebrafish/genetics , Animal Fins/metabolism , Animals , Biological Evolution , Embryo, Mammalian , Embryo, Nonmammalian , Extremities/physiology , Gene Expression Regulation, Developmental , Homeodomain Proteins/classification , Mice , Morphogenesis/genetics , Multigene Family , Phylogeny
17.
Proc Natl Acad Sci U S A ; 110(26): 10682-6, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23674686

ABSTRACT

Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation. Here, we show that this is not a result of the loss of rib-repressing properties by the snake proteins, but rather to a single base pair change in a Hox/Paired box (Pax)-responsive enhancer, which prevents the binding of Hox proteins. This polymorphism is also found in Paenungulata, such as elephants and manatees, which have extended rib cages. In vivo, this modified enhancer failed to respond to Hox10 activity, supporting its role in the extension of rib cages. In contrast, the enhancer could still interact with Hoxb6 and Pax3 to promote rib formation. These results suggest that a polymorphism in the Hox/Pax-responsive enhancer may have played a role in the evolution of the vertebrate spine by differently modulating its response to rib-suppressing and rib-promoting Hox proteins.


Subject(s)
Genes, Homeobox , Paired Box Transcription Factors/genetics , Spine/embryology , Spine/metabolism , Animals , Base Sequence , Body Patterning/genetics , Colubridae/anatomy & histology , Colubridae/embryology , Colubridae/genetics , Conserved Sequence , Enhancer Elements, Genetic , Evolution, Molecular , Homeobox A10 Proteins , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Molecular Sequence Data , Myogenic Regulatory Factor 5/genetics , Polymorphism, Single Nucleotide , Sequence Homology, Nucleic Acid , Spine/anatomy & histology
18.
Curr Genomics ; 13(4): 289-99, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23204918

ABSTRACT

The elongated, snake-like skeleton, as it has convergently evolved in numerous reptilian and amphibian lineages, is from a developmental biologist's point of view amongst the most fascinating anatomical peculiarities in the animal kingdom. This type of body plan is characterized by a greatly increased number of vertebrae, a reduction of skeletal regionalization along the primary body axis and loss of the limbs. Recent studies conducted on both mouse and snakes now hint at how changes inside the gene regulatory circuitries of the Hox genes and the somitogenesis clock likely underlie these striking departures from standard tetrapod morphology, suggesting scenarios by which snakes and other elongated species may have evolved from more ordinarily bodied ancestors.

19.
Dev Cell ; 18(4): 526-32, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20412768

ABSTRACT

In the emerging discipline of Evo-Devo, the analysis of gene expression patterns can be deceptive without a clear understanding of the underlying regulatory strategies. Here, we use the paradigm of hand and foot evolution to argue that the consideration of the regulatory mechanisms controlling developmental gene expression is essential to resolve comparative conundrums. In this context, we discuss the adaptive relevance of evolving stepwise, distinct developmental regulatory mechanisms to build an arm, i.e., a composite structure with functional coherence.


Subject(s)
Gene Expression Profiling , Animals , Biological Evolution , Chickens , Developmental Biology , Extremities , Fishes , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Models, Biological , Models, Genetic , Protein Structure, Tertiary
20.
Gastroenterology ; 137(6): 2136-45.e1-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19747919

ABSTRACT

BACKGROUND & AIMS: The infiltrating ductal adenocarcinoma of the pancreas is among the most lethal of all solid malignancies, largely owing to a high frequency of early metastasis. We identified microRNA-10a (miR-10a) as an important mediator of metastasis formation in pancreatic tumor cells and investigated the upstream and downstream regulatory mechanisms of miR-10a. METHODS: Northern blot analysis revealed increased expression levels of miR-10a in metastatic pancreatic adenocarcinoma. The role of miR-10a was analyzed by Morpholino and short interfering RNA transfection of pancreatic carcinoma cell lines and resected specimens of human pancreatic carcinoma. Metastatic behavior of primary pancreatic tumors and cancer cell lines was tested in xenotransplantation experiments in zebrafish embryos. RESULTS: We show that miR-10a expression promotes metastatic behavior of pancreatic tumor cells and that repression of miR-10a is sufficient to inhibit invasion and metastasis formation. We further show that miR-10a is a retinoid acid target and that retinoic acid receptor antagonists effectively repress miR-10a expression and completely block metastasis. This antimetastatic activity can be prevented by specific knockdown of HOX genes, HOXB1 and HOXB3. Interestingly, suppression of HOXB1 and HOXB3 in pancreatic cancer cells is sufficient to promote metastasis formation. CONCLUSIONS: These findings suggest that miR-10a is a key mediator of metastatic behavior in pancreatic cancer, which regulates metastasis via suppression of HOXB1 and HOXB3. Inhibition of miR-10a expression (with retinoic acid receptor antagonists) or function (with specific inhibitors) is a promising starting point for antimetastatic therapies.


Subject(s)
Adenocarcinoma/therapy , Benzoates/pharmacology , Chromans/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genetic Therapy , MicroRNAs/metabolism , Pancreatic Neoplasms/therapy , Receptors, Retinoic Acid/antagonists & inhibitors , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/secondary , Animals , Antigens, CD , Blotting, Northern , Cadherins/metabolism , Cell Line, Tumor , Genetic Therapy/methods , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Morpholines/metabolism , Neoplasm Invasiveness , Oligonucleotides, Antisense/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/secondary , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoids/pharmacology , Transfection , Up-Regulation , Xenograft Model Antitumor Assays , Zebrafish/embryology , alpha Catenin/metabolism , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...