Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
2.
Sci Rep ; 14(1): 2586, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297132

ABSTRACT

Disease modeling using human induced pluripotent stem cells (hiPSCs) from patients with genetic disease is a powerful approach for dissecting pathophysiology and drug discovery. Nevertheless, isogenic controls are required to precisely compare phenotypic outcomes from presumed causative mutations rather than differences in genetic backgrounds. Moreover, 2D cellular models often fail to exhibit authentic disease phenotypes resulting in poor validation in vitro. Here we show that a combination of precision gene editing and bioengineered 3D tissue models can establish advanced isogenic hiPSC-derived cardiac disease models, overcoming these drawbacks. To model inherited cardiac arrhythmias we selected representative N588D and N588K missense mutations affecting the same codon in the hERG potassium channel gene KCNH2, which are reported to cause long (LQTS) and short (SQTS) QT syndromes, respectively. We generated compound heterozygous variants in normal hiPSCs, and differentiated cardiomyocytes (CMs) and mesenchymal cells (MCs) to form 3D cardiac tissue sheets (CTSs). In hiPSC-derived CM monolayers and 3D CTSs, electrophysiological analysis with multielectrode arrays showed prolonged and shortened repolarization, respectively, compared to the isogenic controls. When pharmacologically inhibiting the hERG channels, mutant 3D CTSs were differentially susceptible to arrhythmic events than the isogenic controls. Thus, this strategy offers advanced disease models that can reproduce clinically relevant phenotypes and provide solid validation of gene mutations in vitro.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Induced Pluripotent Stem Cells/physiology , Long QT Syndrome/genetics , ERG1 Potassium Channel/genetics , Arrhythmias, Cardiac/genetics , Mutation , Myocytes, Cardiac/physiology , Phenotype , Action Potentials/genetics
3.
Nature ; 626(7998): 357-366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052228

ABSTRACT

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Subject(s)
Embryonic Development , Germ Layers , Pluripotent Stem Cells , Humans , Cell Differentiation , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Germ Layers/cytology , Germ Layers/embryology , Germ Layers/metabolism , Pluripotent Stem Cells/cytology , Interleukin-6/metabolism , Gastrula/cytology , Gastrula/embryology , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism
4.
Front Cell Dev Biol ; 11: 1290876, 2023.
Article in English | MEDLINE | ID: mdl-38149046

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, continues to spread around the world with serious cases and deaths. It has also been suggested that different genetic variants in the human genome affect both the susceptibility to infection and severity of disease in COVID-19 patients. Angiotensin-converting enzyme 2 (ACE2) has been identified as a cell surface receptor for SARS-CoV and SARS-CoV-2 entry into cells. The construction of an experimental model system using human iPS cells would enable further studies of the association between viral characteristics and genetic variants. Airway and alveolar epithelial cells are cell types of the lung that express high levels of ACE2 and are suitable for in vitro infection experiments. Here, we show that human iPS cell-derived airway and alveolar epithelial cells are highly susceptible to viral infection of SARS-CoV-2. Using gene knockout with CRISPR-Cas9 in human iPS cells we demonstrate that ACE2 plays an essential role in the airway and alveolar epithelial cell entry of SARS-CoV-2 in vitro. Replication of SARS-CoV-2 was strongly suppressed in ACE2 knockout (KO) lung cells. Our model system based on human iPS cell-derived lung cells may be applied to understand the molecular biology regulating viral respiratory infection leading to potential therapeutic developments for COVID-19 and the prevention of future pandemics.

5.
Inflamm Regen ; 43(1): 43, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684663

ABSTRACT

BACKGROUND: Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources. METHODS: Patients with designated intractable diseases were recruited for the study and blood samples were collected after written informed consent was obtained from the patients or their guardians. From the obtained samples, iPSCs were established using the episomal method. The established iPSCs were deposited in a cell bank. RESULTS: We established 1,532 iPSC clones from 259 patients with 139 designated intractable diseases. The efficiency of iPSC establishment did not vary based on age and sex. Most iPSC clones originated from non-T and non-B hematopoietic cells. All iPSC clones expressed key transcription factors, OCT3/4 (range 0.27-1.51; mean 0.79) and NANOG (range 0.15-3.03; mean 1.00), relative to the reference 201B7 iPSC clone. CONCLUSIONS: These newly established iPSCs are readily available to the researchers and can prove to be a useful resource for research on rare intractable diseases.

6.
Stem Cell Reports ; 18(10): 1987-2002, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37683645

ABSTRACT

Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.


Subject(s)
Callithrix , Semen , Humans , Male , Animals , Mice , Germ Cells , Cell Differentiation/genetics , RNA, Messenger/genetics
7.
iScience ; 26(10): 107685, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37701566

ABSTRACT

Application of the tetracycline-inducible gene expression system (Tet-On) in human induced pluripotent stem cells (hiPSCs) has become a fundamental transgenic tool owing to its regulatable gene expression. One of the major hurdles in hiPSC application is non-uniform transgene activation. Here, we report that the supplementation of reverse tetracycline transactivator (rtTA) in polyclonal hiPSCs populations can achieve the uniform transgene activation of Tet-On. Furthermore, the choice of antibiotic selection markers connected by an internal ribosomal entry site (IRES) can influence the expression of upstream transgenes. In particular, expression of the rtTA is more uniform in cell populations when linked to puromycin as compared to neomycin, obviating the need for sub-cloning or supplementation of rtTA. Finally, to expand the range of applications, we adopted our findings to tetracycline-inducible MyoD vector (Tet-MyoD). Our Tet-MyoD promises efficient, robust, and reproducible directed myogenic differentiation of hiPSCs.

8.
Nat Commun ; 14(1): 2243, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076490

ABSTRACT

Translational modulation based on RNA-binding proteins can be used to construct artificial gene circuits, but RNA-binding proteins capable of regulating translation efficiently and orthogonally remain scarce. Here we report CARTRIDGE (Cas-Responsive Translational Regulation Integratable into Diverse Gene control) to repurpose Cas proteins as translational modulators in mammalian cells. We demonstrate that a set of Cas proteins efficiently and orthogonally repress or activate the translation of designed mRNAs that contain a Cas-binding RNA motif in the 5'-UTR. By linking multiple Cas-mediated translational modulators, we designed and built artificial circuits like logic gates, cascades, and half-subtractor circuits. Moreover, we show that various CRISPR-related technologies like anti-CRISPR and split-Cas9 platforms could be similarly repurposed to control translation. Coupling Cas-mediated translational and transcriptional regulation enhanced the complexity of synthetic circuits built by only introducing a few additional elements. Collectively, CARTRIDGE has enormous potential as a versatile molecular toolkit for mammalian synthetic biology.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Cas Systems , Animals , CRISPR-Cas Systems/genetics , CRISPR-Associated Proteins/genetics , Gene Expression Regulation , Gene Regulatory Networks , RNA, Messenger , Mammals/genetics
9.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Article in English | MEDLINE | ID: mdl-36866681

ABSTRACT

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Tachycardia, Ventricular , Humans , Calmodulin/genetics , Calmodulin/metabolism , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/metabolism , Arrhythmias, Cardiac , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Calcium/metabolism , Mutation
10.
Nat Biomed Eng ; 7(1): 24-37, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36509913

ABSTRACT

The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αß cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Animals , Humans , Receptors, Antigen, T-Cell/genetics , Induced Pluripotent Stem Cells/pathology , CD8-Positive T-Lymphocytes , Neoplasms/therapy , Cell Proliferation
11.
Heart Rhythm ; 20(1): 89-99, 2023 01.
Article in English | MEDLINE | ID: mdl-36007726

ABSTRACT

BACKGROUND: A missense mutation in the α1c subunit of voltage-gated L-type Ca2+ channel-coding CACNA1C-E1115K, located in the Ca2+ selectivity site, causes a variety of arrhythmogenic phenotypes. OBJECTIVE: We aimed to investigate the electrophysiological features and pathophysiological mechanisms of CACNA1C-E1115K in patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). METHODS: We generated iPSCs from a patient carrying heterozygous CACNA1C-E1115K with overlapping phenotypes of long QT syndrome, Brugada syndrome, and mild cardiac dysfunction. Electrophysiological properties were investigated using iPSC-CMs. We used iPSCs from a healthy individual and an isogenic iPSC line corrected using CRISPR-Cas9-mediated gene editing as controls. A mathematical E1115K-CM model was developed using a human ventricular cell model. RESULTS: Patch-clamp analysis revealed that E1115K-iPSC-CMs exhibited reduced peak Ca2+ current density and impaired Ca2+ selectivity with an increased permeability to monovalent cations. Consequently, E1115K-iPSC-CMs showed decreased action potential plateau amplitude, longer action potential duration (APD), and a higher frequency of early afterdepolarization compared with controls. In optical recordings examining the antiarrhythmic drug effect, late Na+ channel current (INaL) inhibitors (mexiletine and GS-458967) shortened APDs specifically in E1115K-iPSC-CMs. The AP-clamp using a voltage command obtained from E1115K-iPSC-CMs with lower action potential plateau amplitude and longer APD confirmed the upregulation of INaL. An in silico study recapitulated the in vitro electrophysiological properties. CONCLUSION: Our iPSC-based analysis in CACNA1C-E1115K with disrupted CaV1.2 selectivity demonstrated that the aberrant currents through the mutant channels carried by monovalent cations resulted in specific action potential changes, which increased endogenous INaL, thereby synergistically contributing to the arrhythmogenic phenotype.


Subject(s)
Brugada Syndrome , Calcium Channels, L-Type , Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Action Potentials , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/genetics , Myocytes, Cardiac/metabolism , Phenotype
12.
Front Cell Dev Biol ; 10: 1030339, 2022.
Article in English | MEDLINE | ID: mdl-36506084

ABSTRACT

The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.

13.
Cell Rep Methods ; 2(2): 100155, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35474962

ABSTRACT

Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, reproducibility issues, often arising from variability during passaging steps, remain. Here, we describe an improved method for the subculture of human PSCs. The revised method significantly enhances the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing and directed differentiation. Furthermore, the method does not alter PSC characteristics after long-term culture and attenuates the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.


Subject(s)
Pluripotent Stem Cells , Humans , Reproducibility of Results , Cell Differentiation/genetics
14.
Cell Rep ; 39(4): 110721, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35476996

ABSTRACT

The resistance to transcription factor-mediated reprogramming into pluripotent stem cells is one of the distinctive features of cancer cells. Here we dissect the profiles of reprogramming factor binding and the subsequent transcriptional response in cancer cells to reveal its underlying mechanisms. Using clear cell sarcomas (CCSs), we show that the driver oncogene EWS/ATF1 misdirects the reprogramming factors to cancer-specific enhancers and thereby impairs the transcriptional response toward pluripotency that is otherwise provoked. Sensitization to the reprogramming cue is observed in other cancer types when the corresponding oncogenic signals are pharmacologically inhibited. Exploiting this oncogene dependence of the transcriptional "stiffness," we identify mTOR signaling pathways downstream of EWS/ATF1 and discover that inhibiting mTOR activity substantially attenuates the propagation of CCS cells in vitro and in vivo. Our results demonstrate that the early transcriptional response to cell fate perturbations can be a faithful readout to identify effective therapeutics targets in cancer cells.


Subject(s)
Oncogenes , Sarcoma, Clear Cell , Humans , Sarcoma, Clear Cell/genetics , Signal Transduction , TOR Serine-Threonine Kinases , Transcription Factors/genetics
15.
Nat Commun ; 12(1): 5041, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413299

ABSTRACT

In vivo reprogramming provokes a wide range of cell fate conversion. Here, we discover that in vivo induction of higher levels of OSKM in mouse somatic cells leads to increased expression of primordial germ cell (PGC)-related genes and provokes genome-wide erasure of genomic imprinting, which takes place exclusively in PGCs. Moreover, the in vivo OSKM reprogramming results in development of cancer that resembles human germ cell tumors. Like a subgroup of germ cell tumors, propagated tumor cells can differentiate into trophoblasts. Moreover, these tumor cells give rise to induced pluripotent stem cells (iPSCs) with expanded differentiation potential into trophoblasts. Remarkably, the tumor-derived iPSCs are able to contribute to non-neoplastic somatic cells in adult mice. Mechanistically, DMRT1, which is expressed in PGCs, drives the reprogramming and propagation of the tumor cells in vivo. Furthermore, the DMRT1-related epigenetic landscape is associated with trophoblast competence of the reprogrammed cells and provides a therapeutic target for germ cell tumors. These results reveal an unappreciated route for somatic cell reprogramming and underscore the impact of reprogramming in development of germ cell tumors.


Subject(s)
Induced Pluripotent Stem Cells/pathology , Neoplasms, Germ Cell and Embryonal/pathology , Neoplasms/pathology , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Cell Line, Tumor , Cells, Cultured , Cellular Reprogramming/physiology , Epigenesis, Genetic , Female , Genomic Imprinting , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Inbred ICR , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Transcription Factors/genetics
16.
Cell Stem Cell ; 28(6): 1023-1039.e13, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33831365

ABSTRACT

Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


Subject(s)
Pluripotent Stem Cells , Trophoblasts , Cell Differentiation , Female , Humans , Placenta , Pregnancy
17.
Nat Commun ; 12(1): 560, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495473

ABSTRACT

The squamous-columnar junction (SCJ) is a boundary consisting of precisely positioned transitional epithelium between the squamous and columnar epithelium. Transitional epithelium is a hotspot for precancerous lesions, and is therefore clinically important; however, the origins and physiological properties of transitional epithelium have not been fully elucidated. Here, by using mouse genetics, lineage tracing, and organoid culture, we examine the development of the SCJ in the mouse stomach, and thus define the unique features of transitional epithelium. We find that two transcription factors, encoded by Sox2 and Gata4, specify primitive transitional epithelium into squamous and columnar epithelium. The proximal-distal segregation of Sox2 and Gata4 expression establishes the boundary of the unspecified transitional epithelium between committed squamous and columnar epithelium. Mechanistically, Gata4-mediated expression of the morphogen Fgf10 in the distal stomach and Sox2-mediated Fgfr2 expression in the proximal stomach induce the intermediate regional activation of MAPK/ERK, which prevents the differentiation of transitional epithelial cells within the SCJ boundary. Our results have implications for tissue regeneration and tumorigenesis, which are related to the SCJ.


Subject(s)
Epithelial Cells/metabolism , GATA4 Transcription Factor/genetics , Gene Expression Regulation , Intercellular Junctions/genetics , MAP Kinase Signaling System/genetics , SOXB1 Transcription Factors/genetics , Animals , Cells, Cultured , Female , GATA4 Transcription Factor/metabolism , Gastric Mucosa/metabolism , Keratin-7/genetics , Keratin-7/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Mice, Transgenic , SOXB1 Transcription Factors/metabolism
18.
Nat Commun ; 11(1): 2876, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513994

ABSTRACT

Precise gene editing aims at generating single-nucleotide modifications to correct or model human disease. However, precision editing with nucleases such as CRIPSR-Cas9 has seen limited success due to poor efficiency and limited practicality. Here, we establish a fluorescent DNA repair assay in human induced pluripotent stem (iPS) cells to visualize and quantify the frequency of DNA repair outcomes during monoallelic and biallelic targeting. We found that modulating both DNA repair and cell cycle phase via defined culture conditions and small molecules synergistically enhanced the frequency of homology-directed repair (HDR). Notably, targeting in homozygous reporter cells results in high levels of editing with a vast majority of biallelic HDR outcomes. We then leverage efficient biallelic HDR with mixed ssODN repair templates to generate heterozygous mutations. Synergistic gene editing represents an effective strategy to generate precise genetic modifications in human iPS cells.


Subject(s)
Cell Cycle , DNA Repair , Gene Editing , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Alleles , Amino Acid Sequence , Base Sequence , Cold-Shock Response , Fluorescence , Genetic Loci , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Homozygote , Humans , Mutation/genetics
19.
Nature ; 580(7801): 124-129, 2020 04.
Article in English | MEDLINE | ID: mdl-32238941

ABSTRACT

Pluripotent stem cells are increasingly used to model different aspects of embryogenesis and organ formation1. Despite recent advances in in vitro induction of major mesodermal lineages and cell types2,3, experimental model systems that can recapitulate more complex features of human mesoderm development and patterning are largely missing. Here we used induced pluripotent stem cells for the stepwise in vitro induction of presomitic mesoderm and its derivatives to model distinct aspects of human somitogenesis. We focused initially on modelling the human segmentation clock, a major biological concept believed to underlie the rhythmic and controlled emergence of somites, which give rise to the segmental pattern of the vertebrate axial skeleton. We observed oscillatory expression of core segmentation clock genes, including HES7 and DKK1, determined the period of the human segmentation clock to be around five hours, and demonstrated the presence of dynamic travelling-wave-like gene expression in in vitro-induced human presomitic mesoderm. Furthermore, we identified and compared oscillatory genes in human and mouse presomitic mesoderm derived from pluripotent stem cells, which revealed species-specific and shared molecular components and pathways associated with the putative mouse and human segmentation clocks. Using CRISPR-Cas9-based genome editing technology, we then targeted genes for which mutations in patients with segmentation defects of the vertebrae, such as spondylocostal dysostosis, have been reported (HES7, LFNG, DLL3 and MESP2). Subsequent analysis of patient-like and patient-derived induced pluripotent stem cells revealed gene-specific alterations in oscillation, synchronization or differentiation properties. Our findings provide insights into the human segmentation clock as well as diseases associated with human axial skeletogenesis.


Subject(s)
Biological Clocks/physiology , Embryonic Development/physiology , Pluripotent Stem Cells/cytology , Somites/cytology , Somites/growth & development , Abnormalities, Multiple/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Biological Clocks/genetics , Embryonic Development/genetics , Gene Editing , Gene Expression Regulation, Developmental/genetics , Glycosyltransferases/deficiency , Glycosyltransferases/genetics , Hernia, Diaphragmatic/genetics , Humans , In Vitro Techniques , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Phenotype , Somites/metabolism , Time Factors
20.
Stem Cell Reports ; 14(3): 520-527, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32109368

ABSTRACT

A common strategy for multi-protein expression is to link genes by self-cleaving 2A peptide sequences. Yet, little is known how the 2A peptide-derived N-terminal proline or adjacent non-native residues introduced during cDNA cloning affects protein stoichiometry. Polycistronic reprogramming constructs with altered KLF4 protein stoichiometry can influence induced pluripotent stem cell (iPSC) generation. We studied the impact of N-terminal 2A peptide-adjacent residues on the protein stability of two KLF4 isoforms, and assayed their capacity to generate iPSCs. Here, we show that the N-terminal proline remnant of the 2A peptide, alone or in combination with leucine, introduced during polycistronic cloning, destabilizes KLF4 resulting in increased protein degradation, which hinders reprogramming. Interestingly, the addition of charged and hydrophilic amino acids, such as glutamate or lysine stabilizes KLF4, enhancing reprogramming phenotypes. These findings raise awareness that N-terminal modification with 2A peptide-derived proline or additional cloning conventions may affect protein stability within polycistronic constructs.


Subject(s)
Amino Acids/metabolism , Cellular Reprogramming , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/metabolism , Peptides/metabolism , Amino Acid Sequence , Animals , Female , Glutamic Acid/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Kruppel-Like Factor 4 , Mice, Inbred C57BL , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...