Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Immunol ; 53(1-2): 132-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22906481

ABSTRACT

Previous experiments from our laboratories have identified peptides derived from the human astrovirus coat protein (CP) that bind C1q and mannose binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. The purpose of this study was to evaluate the function of these coat protein peptides (CPPs) in an in vitro model of complement-mediated disease (ABO incompatibility), preliminarily assess their in vivo complement suppression profile and develop more highly potent derivatives of these molecules. E23A, a 30 amino acid CPP derivative previously demonstrated to inhibit classical pathway activation was able to dose-dependently inhibit lysis of AB erythrocytes treated with mismatched human O serum. Additionally, when injected into rats, E23A inhibited the animals' serum from lysing antibody-sensitized erythrocytes, providing preliminary in vivo functional evidence that this CPP can cross the species barrier to inhibit serum complement activity in rodents. A rational drug design approach was implemented to identify more potent CPP derivatives, resulting in the identification and characterization of a 15 residue peptide (polar assortant (PA)), which demonstrated both superior inhibition of classical complement pathway activation and robust binding to C1q collagen-like tails. PA also inhibited ABO incompatibility in vitro and demonstrated in vivo complement suppression up to 24h post-injection. CPP's ability to inhibit ABO incompatibility in vitro, proof of concept in vivo inhibitory activity in rats and the development of the highly potent PA derivative set the stage for preclinical testing of this molecule in small animal models of complement-mediated disease.


Subject(s)
Blood Group Incompatibility/drug therapy , Capsid Proteins/pharmacology , Complement Pathway, Classical/drug effects , Complement Pathway, Mannose-Binding Lectin/drug effects , Peptides/pharmacology , ABO Blood-Group System/immunology , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Humans , Peptides/chemistry , Rats , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL