Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
BMC Bioinformatics ; 25(1): 165, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664627

ABSTRACT

BACKGROUND: The annotation of protein sequences in public databases has long posed a challenge in molecular biology. This issue is particularly acute for viral proteins, which demonstrate limited homology to known proteins when using alignment, k-mer, or profile-based homology search approaches. A novel methodology employing Large Language Models (LLMs) addresses this methodological challenge by annotating protein sequences based on embeddings. RESULTS: Central to our contribution is the soft alignment algorithm, drawing from traditional protein alignment but leveraging embedding similarity at the amino acid level to bypass the need for conventional scoring matrices. This method not only surpasses pooled embedding-based models in efficiency but also in interpretability, enabling users to easily trace homologous amino acids and delve deeper into the alignments. Far from being a black box, our approach provides transparent, BLAST-like alignment visualizations, combining traditional biological research with AI advancements to elevate protein annotation through embedding-based analysis while ensuring interpretability. Tests using the Virus Orthologous Groups and ViralZone protein databases indicated that the novel soft alignment approach recognized and annotated sequences that both blastp and pooling-based methods, which are commonly used for sequence annotation, failed to detect. CONCLUSION: The embeddings approach shows the great potential of LLMs for enhancing protein sequence annotation, especially in viral genomics. These findings present a promising avenue for more efficient and accurate protein function inference in molecular biology.


Subject(s)
Algorithms , Molecular Sequence Annotation , Sequence Alignment , Molecular Sequence Annotation/methods , Sequence Alignment/methods , Viral Proteins/genetics , Viral Proteins/chemistry , Genes, Viral , Databases, Protein , Computational Biology/methods , Amino Acid Sequence
2.
ISME Commun ; 3(1): 108, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789093

ABSTRACT

Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B12-dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide-triphosphate reductase (Class II RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of Class II RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling-downwelling events. Defining Class II RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton Class II RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in Class II RTPR virioplankton, occurring as both free viruses and within infected cells, indicated possible viral-host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from Class II RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.

3.
mBio ; 14(2): e0029523, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37017542

ABSTRACT

The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.


Subject(s)
Bacteriophages , Bradyrhizobium , Glycine max , Bacteriophages/genetics , Bradyrhizobium/genetics , Base Sequence , Phylogeny , Symbiosis
4.
Front Microbiol ; 13: 858366, 2022.
Article in English | MEDLINE | ID: mdl-35531281

ABSTRACT

Viruses are the most abundant and diverse biological entities on the planet and constitute a significant proportion of Earth's genetic diversity. Most of this diversity is not represented by isolated viral-host systems and has only been observed through sequencing of viral metagenomes (viromes) from environmental samples. Viromes provide snapshots of viral genetic potential, and a wealth of information on viral community ecology. These data also provide opportunities for exploring the biochemistry of novel viral enzymes. The in vitro biochemical characteristics of novel viral DNA polymerases were explored, testing hypothesized differences in polymerase biochemistry according to protein sequence phylogeny. Forty-eight viral DNA Polymerase I (PolA) proteins from estuarine viromes, hot spring metagenomes, and reference viruses, encompassing a broad representation of currently known diversity, were synthesized, expressed, and purified. Novel functionality was shown in multiple PolAs. Intriguingly, some of the estuarine viral polymerases demonstrated moderate to strong innate DNA strand displacement activity at high enzyme concentration. Strand-displacing polymerases have important technological applications where isothermal reactions are desirable. Bioinformatic investigation of genes neighboring these strand displacing polymerases found associations with SNF2 helicase-associated proteins. The specific function of SNF2 family enzymes is unknown for prokaryotes and viruses. In eukaryotes, SNF2 enzymes have chromatin remodeling functions but do not separate nucleic acid strands. This suggests the strand separation function may be fulfilled by the DNA polymerase for viruses carrying SNF2 helicase-associated proteins. Biochemical data elucidated from this study expands understanding of the biology and ecological behavior of unknown viruses. Moreover, given the numerous biotechnological applications of viral DNA polymerases, novel viral polymerases discovered within viromes may be a rich source of biological material for further in vitro DNA amplification advancements.

5.
Sci Total Environ ; 830: 154619, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35306079

ABSTRACT

Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p< 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , Students , Universities , Wastewater , Wastewater-Based Epidemiological Monitoring
6.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Article in English | MEDLINE | ID: mdl-34522049

ABSTRACT

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Subject(s)
Genome, Viral , Phenotype , Viruses/classification , Viruses/genetics , Genotype , Humans , Virion/genetics , Virus Replication/genetics
7.
Methods Protoc ; 4(2)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065842

ABSTRACT

The COVID-19 pandemic is a global crisis and continues to impact communities as the disease spreads. Clinical testing alone provides a snapshot of infected individuals but is costly and difficult to perform logistically across whole populations. The virus which causes COVID-19, SARS-CoV-2, is shed in human feces and urine and can be detected in human waste. SARS-CoV-2 can be shed in high concentrations (>107 genomic copies/mL) due to its ability to replicate in the gastrointestinal tract of humans through attachment to the angiotensin-converting enzyme 2 (ACE-2) receptors there. Monitoring wastewater for SARS-CoV-2, alongside clinical testing, can more accurately represent the spread of disease within a community. This protocol describes a reliable and efficacious method to recover SARS-CoV-2 in wastewater, quantify genomic RNA levels, and evaluate concentration fluctuations over time. Using this protocol, viral levels as low as 10 genomic copies/mL were successfully detected from 30 mL of wastewater in more than seven-hundred samples collected between August 2020 and March 2021. Through the adaptation of traditional enteric virus methods used in food safety research, targets have been reliably detected with no inhibition of detection (RT-qPCR) observed in any sample processed. This protocol is currently used for surveillance of wastewater systems across New Castle County, Delaware.

8.
Sci Rep ; 11(1): 1629, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452291

ABSTRACT

We investigated the nascent application and efficacy of sampling and sequencing environmental DNA (eDNA) in terrestrial environments using rainwater that filters through the forest canopy and understory vegetation (i.e., throughfall). We demonstrate the utility and potential of this method for measuring microbial communities and forest biodiversity. We collected pure rainwater (open sky) and throughfall, successfully extracted DNA, and generated over 5000 unique amplicon sequence variants. We found that several taxa including Mycoplasma sp., Spirosoma sp., Roseomonas sp., and Lactococcus sp. were present only in throughfall samples. Spiroplasma sp., Methylobacterium sp., Massilia sp., Pantoea sp., and Sphingomonas sp. were found in both types of samples, but more abundantly in throughfall than in rainwater. Throughfall samples contained Gammaproteobacteria that have been previously found to be plant-associated, and may contribute to important functional roles. We illustrate how this novel method can be used for measuring microbial biodiversity in forest ecosystems, foreshadowing the utility for quantifying both prokaryotic and eukaryotic lifeforms. Leveraging these methods will enhance our ability to detect extant species, describe new species, and improve our overall understanding of ecological community dynamics in forest ecosystems.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Environmental/analysis , Forests , Biodiversity , Cluster Analysis , Cytophagaceae/genetics , Cytophagaceae/isolation & purification , Fresh Water/microbiology , Lactococcus/genetics , Lactococcus/isolation & purification , Mycoplasma/genetics , Mycoplasma/isolation & purification , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/metabolism
9.
Front Microbiol ; 11: 1494, 2020.
Article in English | MEDLINE | ID: mdl-32733413

ABSTRACT

As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.

10.
PeerJ ; 8: e8584, 2020.
Article in English | MEDLINE | ID: mdl-32149022

ABSTRACT

Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki's utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal http://virome.dbi.udel.edu. Iroki's source code is released under the MIT license and is available at https://github.com/mooreryan/iroki.

11.
Mar Ecol Prog Ser ; 653: 57-75, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33424068

ABSTRACT

The eastern oyster (Crassostrea virginica) is a keystone species in estuarine environments but faces threats to shell formation associated with warming temperatures and acidification. Extrapallial fluid (EF), which is responsible for shell formation, harbors diverse and abundant microbial communities. Commensal microbial communities are vital to host health and fitness, yet long-term studies investigating temporal responses of the EF microbiome and its function in oyster fitness are lacking. In this study, bacterial communities of oyster EF and the water column were characterized monthly from October 2010 to September 2011. We investigated the selection, composition, and dynamics of resident and transient community members, evaluated the impact of temperature on EF microbial communities, and examined the functional role of the EF microbiome. Oyster EF communities were significantly different from the water column and were enriched for several taxa, including the Deltaproteobacteria, Epsilonproteobacteria, and Gammaproteobacteria. Overall, 94 resident members were identified in oyster EF. These members were persistent and abundant, comprising on average 33% of EF communities. Resident EF communities formed high-temperature and low-temperature groups and were more abundant overall at colder temperatures. Oyster EF resident communities were predicted to be enriched for dissimilatory nitrate reduction, nitrogen fixation, nitrification, and sulfite reductase genes. Sulfate and nitrate reduction may have a synergistic effect on calcium carbonate precipitation and indirectly aid in shell formation. Therefore, the potential role of the oyster EF microbiome in shell formation warrants further investigation as oysters and other shellfish face the future impacts of ocean warming and acidification.

12.
mBio ; 10(2)2019 03 05.
Article in English | MEDLINE | ID: mdl-30837341

ABSTRACT

Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.


Subject(s)
Bacteria/genetics , Bacteria/virology , Clustered Regularly Interspaced Short Palindromic Repeats , DNA, Bacterial/genetics , Genes, Viral , Metagenome , Water Microbiology , DNA, Bacterial/chemistry , Sequence Homology
13.
Front Microbiol ; 10: 134, 2019.
Article in English | MEDLINE | ID: mdl-30804913

ABSTRACT

Ribonucleotide reductases (RNRs) are ancient enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides. They are required for virtually all cellular life and are prominent within viral genomes. RNRs share a common ancestor and must generate a protein radical for direct ribonucleotide reduction. The mechanisms by which RNRs produce radicals are diverse and divide RNRs into three major classes and several subclasses. The diversity of radical generation methods means that cellular organisms and viruses typically contain the RNR best-suited to the environmental conditions surrounding DNA replication. However, such diversity has also fostered high rates of RNR misannotation within subject sequence databases. These misannotations have resulted in incorrect translative presumptions of RNR biochemistry and have diminished the utility of this marker gene for ecological studies of viruses. We discovered a misannotation of the RNR gene within the Prochlorococcus phage P-SSP7 genome, which caused a chain of misannotations within commonly observed RNR genes from marine virioplankton communities. These RNRs are found in marine cyanopodo- and cyanosiphoviruses and are currently misannotated as Class II RNRs, which are O2-independent and require cofactor B12. In fact, these cyanoviral RNRs are Class I enzymes that are O2-dependent and may require a di-metal cofactor made of Fe, Mn, or a combination of the two metals. The discovery of an overlooked Class I ß subunit in the P-SSP7 genome, together with phylogenetic analysis of the α and ß subunits confirms that the RNR from P-SSP7 is a Class I RNR. Phylogenetic and conserved residue analyses also suggest that the P-SSP7 RNR may constitute a novel Class I subclass. The reannotation of the RNR clade represented by P-SSP7 means that most lytic cyanophage contain Class I RNRs, while their hosts, B12-producing Synechococcus and Prochlorococcus, contain Class II RNRs. By using a Class I RNR, cyanophage avoid a dependence on host-produced B12, a more effective strategy for a lytic virus. The discovery of a novel RNR ß subunit within cyanopodoviruses also implies that some unknown viral genes may be familiar cellular genes that are too divergent for homology-based annotation methods to identify.

14.
Front Microbiol ; 9: 3053, 2018.
Article in English | MEDLINE | ID: mdl-30619142

ABSTRACT

Shotgun metagenomics, which allows for broad sampling of viral diversity, has uncovered genes that are widely distributed among virioplankton populations and show linkages to important biological features of unknown viruses. Over 25% of known dsDNA phage carry the DNA polymerase I (polA) gene, making it one of the most widely distributed phage genes. Because of its pivotal role in DNA replication, this enzyme is linked to phage lifecycle characteristics. Previous research has suggested that a single amino acid substitution might be predictive of viral lifestyle. In this study Chesapeake Bay virioplankton were sampled by shotgun metagenomic sequencing (using long and short read technologies). More polA sequences were predicted from this single viral metagenome (virome) than from 86 globally distributed virome libraries (ca. 2,100, and 1,200, respectively). The PolA peptides predicted from the Chesapeake Bay virome clustered with 69% of PolA peptides from global viromes; thus, remarkably the Chesapeake Bay virome captured the majority of known PolA peptide diversity in viruses. This deeply sequenced virome also expanded the diversity of PolA sequences, increasing the number of PolA clusters by 44%. Contigs containing polA sequences were also used to examine relationships between phylogenetic clades of PolA and other genes within unknown viral populations. Phylogenic analysis revealed five distinct groups of phages distinguished by the amino acids at their 762 (Escherichia coli IAI39 numbering) positions and replication genes. DNA polymerase I sequences from Tyr762 and Phe762 groups were most often neighbored by ring-shaped superfamily IV helicases and ribonucleotide reductases (RNRs). The Leu762 groups had non-ring shaped helicases from superfamily II and were further distinguished by an additional helicase gene from superfamily I and the lack of any identifiable RNR genes. Moreover, we found that the inclusion of ribonucleotide reductase associated with PolA helped to further differentiate phage diversity, chiefly within lytic podovirus populations. Altogether, these data show that DNA Polymerase I is a useful marker for observing the diversity and composition of the virioplankton and may be a driving factor in the divergence of phage replication components.

15.
Nat Microbiol ; 2(11): 1571, 2017 11.
Article in English | MEDLINE | ID: mdl-28974689

ABSTRACT

The original publication of this Article included analysis of virus and microbial cell abundances and virus-to-microbial cell ratios. Data in the Article came from 25 studies intended to be exclusively from marine sites. However, 3 of the studies included in the original unified dataset were erroneously classified as marine sites during compilation. The records with mis-recorded longitude and latitude values were, in fact, taken from inland, freshwater sources. The three inland, freshwater datasets are ELA, TROUT and SWAT. The data from these three studies represent 163 of the 5,671 records in the original publication. In the updated version of the Article, all analyses have been recalculated using the same statistical analysis pipeline released via GitHub as part of the original publication. Removal of the three studies reduces the unified dataset to 5,508 records. Analyses involving all grouped datasets have been updated with changes noted in each figure. All key results remain qualitatively unchanged. All data and scripts used in this correction have been made available as a new, updated GitHub release to reflect the updated dataset and figures.

16.
Annu Rev Virol ; 4(1): 201-219, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28961409

ABSTRACT

Viral abundance in soils can range from below detection limits in hot deserts to over 1 billion per gram in wetlands. Abundance appears to be strongly influenced by water availability and temperature, but a lack of informational standards creates difficulties for cross-study analysis. Soil viral diversity is severely underestimated and undersampled, although current measures of viral richness are higher for soils than for aquatic ecosystems. Both morphometric and metagenomic analyses have raised questions about the prevalence of nontailed, ssDNA viruses in soils. Soil is complex and critically important to terrestrial biodiversity and human civilization, but impacts of viral activities on soil ecosystem services are poorly understood. While information from aquatic systems and medical microbiology suggests the potential for viral influences on nutrient cycles, food web interactions, gene transfer, and other key processes in soils, very few empirical data are available. To understand the soil virome, much work remains.


Subject(s)
Biodiversity , Ecosystem , Soil Microbiology , Viruses/genetics , DNA, Single-Stranded/isolation & purification , Food Chain , Gene Transfer, Horizontal , Genome, Viral , Humans , Metagenomics , Virus Physiological Phenomena
17.
mBio ; 8(4)2017 08 08.
Article in English | MEDLINE | ID: mdl-28790203

ABSTRACT

Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration.IMPORTANCE FDA regulations on agricultural antibiotic use have focused on antibiotics that are important for human medicine. Carbadox is an antibiotic not used in humans but frequently used on U.S. pig farms. It is important to study possible side effects of carbadox use because it has been shown to promote bacterial evolution, which could indirectly impact antibiotic resistance in bacteria of clinical importance. Interestingly, the present study shows greater prophage gene expression in feces from carbadox-fed animals than in feces from nonmedicated animals 2 days after the initiation of in-feed carbadox treatment. Importantly, the phage genetic material isolated in this study contained genes that could provide resistance to antibiotics that are important in human medicine, indicating that human-relevant antibiotic resistance genes are mobile between bacteria via phages. This study highlights the collateral effects of antibiotics and demonstrates the need to consider diverse antibiotic effects whenever antibiotics are being used or new regulations are considered.


Subject(s)
Anti-Infective Agents/administration & dosage , Bacteriophages/genetics , Carbadox/administration & dosage , Gastrointestinal Microbiome , Sus scrofa/microbiology , Transcription, Genetic/drug effects , Animal Feed , Animals , Bacteriophages/drug effects , Drug Resistance, Microbial , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gene Expression Profiling , Metagenome/drug effects , Prophages/genetics , Sus scrofa/virology , Swine
18.
ISME J ; 11(11): 2479-2491, 2017 11.
Article in English | MEDLINE | ID: mdl-28731469

ABSTRACT

Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells.


Subject(s)
Archaea/virology , Chaperonins/metabolism , Viral Proteins/metabolism , Viruses/metabolism , Chaperonins/genetics , Ecology , Evolution, Molecular , Metagenome , Phylogeny , Viral Proteins/genetics , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
19.
Nat Microbiol ; 1: 15024, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-27572161

ABSTRACT

Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.


Subject(s)
Aquatic Organisms/growth & development , Population Density , Seawater/microbiology , Seawater/virology , Viruses/growth & development , Oceans and Seas , Spatio-Temporal Analysis
20.
Microbiome ; 4: 9, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27000779

ABSTRACT

BACKGROUND: Since 1982, specific serotypes of Shiga toxin-producing Escherichia coli (STEC) have been recognized as significant foodborne pathogens acquired from contaminated beef and, more recently, other food products. Cattle are the major reservoir hosts of these organisms, and while there have been advancements in food safety practices and industry standards, STEC still remains prevalent within beef cattle operations with cattle hides implicated as major sources of carcass contamination. To investigate whether the composition of hide-specific microbial communities are associated with STEC prevalence, 16S ribosomal RNA (rRNA) bacterial community profiles were obtained from hide and fecal samples collected from a large commercial feedlot over a 3-month period. These community data were examined amidst an extensive collection of prevalence data on a subgroup of STEC that cause illness in humans, referred to as enterohemorrhagic E. coli (EHEC). Fecal 16S rRNA gene OTUs (operational taxonomic units) were subtracted from the OTUs found within each hide 16S rRNA amplicon library to identify hide-specific bacterial populations. RESULTS: Comparative analysis of alpha diversity revealed a significant correlation between low bacterial diversity and samples positive for the presence of E. coli O157:H7 and/or the non-O157 groups: O26, O111, O103, O121, O45, and O145. This trend occurred regardless of diversity metric or fecal OTU presence. The number of EHEC serogroups present in the samples had a compounding effect on the inverse relationship between pathogen presence and bacterial diversity. Beta diversity data showed differences in bacterial community composition between samples containing O157 and non-O157 populations, with certain OTUs demonstrating significant changes in relative abundance. CONCLUSIONS: The cumulative prevalence of the targeted EHEC serogroups was correlated with low bacterial community diversity on pre-harvest cattle hides. Understanding the relationship between indigenous hide bacterial communities and populations may provide strategies to limit EHEC in cattle and provide biomarkers for EHEC risk assessment.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli O157/genetics , Food Microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Shiga-Toxigenic Escherichia coli/genetics , Animals , Biodiversity , Cattle , Escherichia coli Infections/microbiology , Escherichia coli O157/isolation & purification , Feces/microbiology , Female , Humans , Meat/microbiology , Sequence Analysis, RNA , Shiga-Toxigenic Escherichia coli/isolation & purification , Skin/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...