ABSTRACT
IgG serology can be utilized to estimate exposure to Anopheline malaria vectors and the Plasmodium species they transmit. A multiplex bead-based assay simultaneously detected IgG to Anopheles albimanus salivary gland extract (SGE) and four Plasmodium falciparum antigens (CSP, LSA-1, PfAMA1, and PfMSP1) in 11,541 children enrolled at 350 schools across Haiti in 2016. Logistic regression estimated odds of an above-median anti-SGE IgG response adjusting for individual- and environmental-level covariates. Spatial analysis detected statistically significant clusters of schools with students having high anti-SGE IgG levels, and spatial interpolation estimated anti-SGE IgG levels in unsampled locations. Boys had 11% (95% CI: 0.81, 0.98) lower odds of high anti-SGE IgG compared to girls, and children seropositive for PfMSP1 had 53% (95% CI: 1.17, 2.00) higher odds compared to PfMSP1 seronegatives. Compared to the lowest elevation, quartiles 2-4 of higher elevation were associated with successively lower odds (0.81, 0.43, and 0.34, respectively) of high anti-SGE IgG. Seven significant clusters of schools were detected in Haiti, while spatially interpolated results provided a comprehensive picture of anti-SGE IgG levels in the study area. Exposure to malaria vectors by IgG serology with SGE is a proxy to approximate vector biting in children and identify risk factors for vector exposure.
Subject(s)
Anopheles , Male , Child , Female , Animals , Humans , Haiti , Mosquito Vectors , Black People , Immunoglobulin GABSTRACT
BACKGROUND: Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS: From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE: From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.
Subject(s)
Malaria/blood , Malaria/parasitology , Plasmodium malariae , Plasmodium vivax , Antibodies, Protozoan/blood , Antigens, Protozoan , Child , Cluster Analysis , DNA, Protozoan/genetics , Female , Haiti/epidemiology , Humans , Immunoglobulin G/blood , Malaria/epidemiology , Male , Seroepidemiologic Studies , Species Specificity , Time FactorsABSTRACT
Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts from 771 health facilities reporting from across the country throughout the 6-year period from January 2014 to December 2019. To this end, a novel hierarchical Bayesian modelling framework was developed in which a latent, pixel-level incidence surface with spatio-temporal innovations is linked to the observed case data via a flexible catchment sub-model designed to account for the absence of data on case household locations. These maps have focussed the delivery of indoor residual spraying and focal mass drug administration in the Grand'Anse Department in South-Western Haiti.
Subject(s)
Endemic Diseases , Malaria/epidemiology , Seasons , Antimalarials/therapeutic use , Bayes Theorem , Catchment Area, Health , Endemic Diseases/prevention & control , Haiti/epidemiology , Humans , Incidence , Malaria/diagnosis , Malaria/prevention & control , Models, Statistical , Mosquito Control , Spatio-Temporal Analysis , Time FactorsABSTRACT
Microscopy is the gold standard for malaria epidemiology, but laboratory and point-of-care (POC) tests detecting parasite antigen, DNA, and human antibodies against malaria have expanded this capacity. The island nation of Haiti is endemic for Plasmodium falciparum (Pf) malaria, though at a low national prevalence and heterogenous geospatial distribution. In 2015 and 2016, serosurveys were performed of children (ages 6-7 years) sampled in schools in Saut d'Eau commune (n = 1,230) and Grand Anse department (n = 1,664) of Haiti. Children received malaria antigen rapid diagnostic test and provided a filter paper blood sample for further laboratory analysis of the Pf histidine-rich protein 2 (HRP2) antigen, Pf DNA, and anti-Pf IgG antibodies. Prevalence of Pf infection ranged from 0.0-16.7% in 53 Saut d'Eau schools, and 0.0-23.8% in 56 Grand Anse schools. Anti-Pf antibody carriage exceeded 80% of students in some schools from both study sites. Geospatial prediction ellipses were created to indicate clustering of positive tests within the survey areas and overlay of all prediction ellipses for the different types of data revealed regions with high likelihood of active and ongoing Pf malaria transmission. The geospatial utilization of different types of Pf data can provide high confidence for spatial epidemiology of the parasite.
Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , DNA, Protozoan/genetics , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Child , DNA, Protozoan/analysis , Female , Geography , Haiti/epidemiology , Humans , Immunologic Tests , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Spatial AnalysisABSTRACT
Research provides the essential foundation of disease elimination programs, including the global program to eliminate lymphatic filariasis (GPELF). The development and validation of new diagnostic tools and intervention strategies, critical steps in the evolution of GPELF, required a global effort. Lymphatic filariasis research in Haiti involved many partners and was directly linked to the development of the national elimination program and to the success achieved to date. Ongoing research efforts involving many partners will continue to be important in resolving the challenges faced by the program today in its final efforts to achieve elimination.
Subject(s)
Disease Eradication , Elephantiasis, Filarial/prevention & control , Lymphedema/therapy , Diethylcarbamazine/therapeutic use , Elephantiasis, Filarial/complications , Elephantiasis, Filarial/drug therapy , Filaricides/therapeutic use , Haiti , Humans , Lymphedema/etiologyABSTRACT
BACKGROUND: Since 2001, Haiti's National Program for the Elimination of Lymphatic Filariasis (NPELF) has worked to reduce the transmission of lymphatic filariasis (LF) through annual mass drug administration (MDA) with diethylcarbamazine and albendazole. The NPELF reached full national coverage with MDA for LF in 2012, and by 2014, a total of 14 evaluation units (48 communes) had met WHO eligibility criteria to conduct LF transmission assessment surveys (TAS) to determine whether prevalence had been reduced to below a threshold, such that transmission is assumed to be no longer sustainable. Haiti is also endemic for malaria and many communities suffer a high burden of soil transmitted helminths (STH). Heeding the call from WHO for integration of neglected tropical diseases (NTD) activities, Haiti's NPELF worked with the national malaria control program (NMCP) and with partners to develop an integrated TAS (LF-STH-malaria) to include assessments for malaria and STH. METHODOLOGY/PRINCIPLE FINDINGS: The aim of this study was to evaluate the feasibility of using TAS surveys for LF as a platform to collect information about STH and malaria. Between November 2014 and June 2015, TAS were conducted in 14 evaluation units (EUs) including 1 TAS (LF-only), 1 TAS-STH-malaria, and 12 TAS-malaria, with a total of 16,655 children tested for LF, 14,795 tested for malaria, and 298 tested for STH. In all, 12 of the 14 EUs passed the LF TAS, allowing the program to stop MDA for LF in 44 communes. The EU where children were also tested for STH will require annual school-based treatment with albendazole to maintain reduced STH levels. Finally, only 12 of 14,795 children tested positive for malaria by RDT in 38 communes. CONCLUSIONS/SIGNIFICANCE: Haiti's 2014-2015 Integrated TAS surveys provide evidence of the feasibility of using the LF TAS as a platform for integration of assessments for STH and or malaria.
Subject(s)
Elephantiasis, Filarial/transmission , Helminths/isolation & purification , Malaria/transmission , Soil/parasitology , Animals , Child , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/parasitology , Female , Haiti/epidemiology , Helminths/classification , Helminths/genetics , Humans , Malaria/epidemiology , Malaria/parasitology , MaleABSTRACT
The serodiagnosis of Strongyloides stercoralis infection by enzyme-linked immunosorbent assays based on crude antigen (CrAg-ELISA), while useful, has been limited by the reliance on crude parasite extracts. Newer techniques such as the luciferase immunoprecipitation system assay (LIPS), based on a 31-kDa recombinant antigen (termed NIE) from S. stercoralis and/or the recombinant antigen S. stercoralis immunoreactive antigen (SsIR), or the NIE-ELISA have shown promise in controlled settings. We compared each of these serologic assays in individuals from both regions of the world in which S. stercoralis is endemic and those in which it is not. A comprehensive stool evaluation (sedimentation concentration, Baermann concentration with charcoal cultures, agar plate, and Harada-Mori) and four different serologic techniques using CrAg-ELISA or recombinant NIE-ELISA as well as LIPS using NIE alone or in combination with a second recombinant antigen (NIE/SsIR-LIPS) were compared among individuals with parasitologically proven infection (n = 251) and healthy controls from regions of the world in which the infection is nonendemic (n = 11). Accuracy was calculated for each assay. The prevalence of S. stercoralis infection was 29.4% among Argentinean stool samples (n = 228). Sedimentation concentration and Baermann were the most sensitive stool-based methods. NIE-LIPS showed the highest sensitivity (97.8%) and specificity (100%) of the serologic assays. The calculated negative predictive value was highest for both the NIE-LIPS and CrAg-ELISA (>97%) irrespective of disease prevalence. No cross-reactivity with soil-transmitted helminths was noted. NIE-LIPS compares favorably against the current CrAg-ELISA and stool evaluation, providing additional accuracy and ease of performance in the serodiagnosis of S. stercoralis infections irrespective of disease prevalence.
Subject(s)
Antibodies, Helminth/blood , Antigens, Helminth , Parasitology/methods , Strongyloides stercoralis/immunology , Strongyloidiasis/diagnosis , Adolescent , Adult , Animals , Antigens, Helminth/genetics , Argentina , Child , Child, Preschool , Feces/parasitology , Female , Humans , Infant , Infant, Newborn , Male , Recombinant Proteins/genetics , Sensitivity and Specificity , Serologic Tests/methods , Young AdultABSTRACT
Cryptosporidium infection is commonly observed among children and immunocompromised individuals in developing countries, but large-scale outbreaks of disease among adults have not been reported. In contrast, outbreaks of cryptosporidiosis in the United States and Canada are increasingly common among patients of all ages. Thus, it seems likely that residents of regions where Cryptosporidium is highly endemic acquire some level of immunity, while residents of the developed world do not. A new immunodominant Cryptosporidium parvum antigen in the 15- to 17-kDa size range was identified as the Cryptosporidium parvum 60S acidic ribosomal protein P2 (CpP2). We developed a recombinant protein-based enzyme-linked immunosorbent assay for serologic population surveillance for antibodies that was 89% sensitive and 92% specific relative to the results of the large-format Western blot assay. The human IgG response is directed almost exclusively toward the highly conserved, carboxy-terminal 15 amino acids of the protein. Although IgG antibody cross-reactivity was documented with sera from patients with acute babesiosis, the development of an anti-CpP2 antibody response in our Peru study population correlated better with Cryptosporidium infection than with infection by any other parasitic protozoan. In Haiti, the prevalence of antibodies to CpP2 plateaus at 11 to 20 years of age. Because anti-CpP2 IgG antibodies were found only among residents of countries in the developing world where Cryptosporidium infection occurs early and often, we propose that this response may be a proxy for the intensity of infection and for acquired immunity.
Subject(s)
Antibodies, Protozoan/blood , Cloning, Molecular , Cryptosporidium parvum/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Ribosomal Proteins/genetics , Ribosomal Proteins/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Child , Child, Preschool , Cryptosporidium parvum/genetics , Cryptosporidium parvum/immunology , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Haiti , Humans , Immunization , Immunodominant Epitopes , Molecular Sequence Data , Peru , Phosphoproteins/administration & dosage , Phosphoproteins/metabolism , Rabbits , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Ribosomal Proteins/administration & dosage , Ribosomal Proteins/metabolism , Sensitivity and SpecificityABSTRACT
Seven rounds of mass drug administration (MDA) have been administered in Leogane, Haiti, an area hyperendemic for lymphatic filariasis (LF). Sentinel site surveys showed that the prevalence of microfilaremia was reduced to <1% from levels as high as 15.5%, suggesting that transmission had been reduced. A separate 30-cluster survey of 2- to 4-year-old children was conducted to determine if MDA interrupted transmission. Antigen and antifilarial antibody prevalence were 14.3% and 19.7%, respectively. Follow-up surveys were done in 6 villages, including those selected for the cluster survey, to assess risk factors related to continued LF transmission and to pinpoint hotspots of transmission. One hundred houses were mapped in each village using GPS-enabled PDAs, and then 30 houses and 10 alternates were chosen for testing. All individuals in selected houses were asked to participate in a short survey about participation in MDA, history of residence in Leogane and general knowledge of LF. Survey teams returned to the houses at night to collect blood for antigen testing, microfilaremia and Bm14 antibody testing and collected mosquitoes from these communities in parallel. Antigen prevalence was highly variable among the 6 villages, with the highest being 38.2% (Dampus) and the lowest being 2.9% (Corail Lemaire); overall antigen prevalence was 18.5%. Initial cluster surveys of 2- to 4-year-old children were not related to community antigen prevalence. Nearest neighbor analysis found evidence of clustering of infection suggesting that LF infection was focal in distribution. Antigen prevalence among individuals who were systematically noncompliant with the MDAs, i.e. they had never participated, was significantly higher than among compliant individuals (p<0.05). A logistic regression model found that of the factors examined for association with infection, only noncompliance was significantly associated with infection. Thus, continuing transmission of LF seems to be linked to rates of systematic noncompliance.