Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0212113, 2019.
Article in English | MEDLINE | ID: mdl-30845203

ABSTRACT

BACKGROUND: Without an effective vaccine, as was the case early in the 2014-2016 Ebola Outbreak in West Africa, disease control depends entirely on interrupting transmission through early disease detection and prompt patient isolation. Lateral Flow Immunoassays (LFI) are a potential supplement to centralized reference laboratory testing for the early diagnosis of Ebola Virus Disease (EVD). The goal of this study was to assess the performance of commercially available simple and rapid antigen detection LFIs, submitted for review to the WHO via the Emergency Use Assessment and Listing procedure. The study was performed in an Ebola Treatment Centre laboratory involved in EVD testing in Sierra Leone. In light of the current Ebola outbreak in May 2018 in the Democratic Republic of Congo, which highlights the lack of clarity in the global health community about appropriate Ebola diagnostics, our findings are increasingly critical. METHODS: A cross-sectional study was conducted to assess comparative performance of four LFIs for detecting EVD. LFIs were assessed against the same 328 plasma samples and 100 whole EDTA blood samples, using the altona RealStar Filovirus Screen real-time RT-PCR as the bench mark assay. The performance of the Public Health England (PHE) in-house Zaire ebolavirus-specific real time RT-PCR Trombley assay was concurrently assessed. Statistical analysis using generalized estimating equations was conducted to compare LFI performance. FINDINGS: Sensitivity and specificity varied between the LFIs, with specificity found to be significantly higher for whole EDTA blood samples compared to plasma samples in at least 2 LFIs (P≤0.003). Using the altona RT-PCR assay as the bench mark, sensitivities on plasma samples ranged from 79.53% (101/127, 95% CI: 71.46-86.17%) for the DEDIATEST EBOLA (SD Biosensor) to 98.43% (125/127, 95% CI: 94.43-99.81%) for the One step Ebola test (Intec). Specificities ranged from 80.20% (158/197, 95% CI: 74.07-88.60%) for plasma samples using the ReEBOV Antigen test Kit (Corgenix) to 100.00% (98/98, 95% CI: 96.31-100.00%) for whole blood samples using the DEDIATEST EBOLA (SD Biosensor) and SD Ebola Zaire Ag (SD Biosensor). Results also showed the Trombley RT-PCR assay had a lower limit of detection than the altona assay, with some LFIs having higher sensitivity than the altona assay when the Trombley assay was the bench mark. INTERPRETATION: All of the tested EVD LFIs may be considered suitable for use in an outbreak situation (i.e. rule out testing in communities), although they had variable performance characteristics, with none possessing both high sensitivity and specificity. The non-commercial Trombley Zaire ebolavirus RT-PCR assay warrants further investigation, as it appeared more sensitive than the current gold standard, the altona Filovirus Screen RT-PCR assay.


Subject(s)
Hemorrhagic Fever, Ebola/diagnosis , Immunoassay/methods , Adult , Antigens, Viral/blood , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Ebolavirus/genetics , Epidemics , Female , Hemorrhagic Fever, Ebola/epidemiology , Humans , Immunologic Tests , Male , Point-of-Care Systems , RNA, Viral/blood , Reagent Kits, Diagnostic/virology , Sensitivity and Specificity , Sierra Leone
2.
J Clin Microbiol ; 55(5): 1255-1261, 2017 05.
Article in English | MEDLINE | ID: mdl-28250002

ABSTRACT

Inadequate access to rapid testing for Ebola virus disease during the 2014-to-2016 outbreak led to an explosion in the development of diagnostics that could be performed at or near the point of care and by less-experienced operators, leading in turn to an acute need for novel test evaluation. Here, we present the challenges to development and evaluation of novel diagnostics in an emergency setting and suggestions for potential new "global emergency standards" to address them.


Subject(s)
Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Point-of-Care Systems , Africa, Western/epidemiology , Disease Outbreaks , Hemorrhagic Fever, Ebola/virology , Humans
3.
Lancet ; 386(9996): 867-74, 2015 Aug 29.
Article in English | MEDLINE | ID: mdl-26119838

ABSTRACT

BACKGROUND: At present, diagnosis of Ebola virus disease requires transport of venepuncture blood to field biocontainment laboratories for testing by real-time RT-PCR, resulting in delays that complicate patient care and infection control efforts. Therefore, an urgent need exists for a point-of-care rapid diagnostic test for this disease. In this Article, we report the results of a field validation of the Corgenix ReEBOV Antigen Rapid Test kit. METHODS: We performed the rapid diagnostic test on fingerstick blood samples from 106 individuals with suspected Ebola virus disease presenting at two clinical centres in Sierra Leone. Adults and children who were able to provide verbal consent or assent were included; we excluded patients with haemodynamic instability and those who were unable to cooperate with fingerstick or venous blood draw. Two independent readers scored each rapid diagnostic test, with any disagreements resolved by a third. We compared point-of-care rapid diagnostic test results with clinical real-time RT-PCR results (RealStar Filovirus Screen RT-PCR kit 1·0; altona Diagnostics GmbH, Hamburg, Germany) for venepuncture plasma samples tested in a Public Health England field reference laboratory (Port Loko, Sierra Leone). Separately, we performed the rapid diagnostic test (on whole blood) and real-time RT-PCR (on plasma) on 284 specimens in the reference laboratory, which were submitted to the laboratory for testing from many clinical sites in Sierra Leone, including our two clinical centres. FINDINGS: In point-of-care testing, all 28 patients who tested positive for Ebola virus disease by RT-PCR were also positive by fingerstick rapid diagnostic test (sensitivity 100% [95% CI 87·7-100]), and 71 of 77 patients who tested negative by RT-PCR were also negative by the rapid diagnostic test (specificity 92·2% [95% CI 83·8-97·1]). In laboratory testing, all 45 specimens that tested positive by RT-PCR were also positive by the rapid diagnostic test (sensitivity 100% [95% CI 92·1-100]), and 214 of 232 specimens that tested negative by RT-PCR were also negative by the rapid diagnostic test (specificity 92·2% [88·0-95·3]). The two independent readers agreed about 95·2% of point-of-care and 98·6% of reference laboratory rapid diagnostic test results. Cycle threshold values ranged from 15·9 to 26·3 (mean 22·6 [SD 2·6]) for the PCR-positive point-of-care cohort and from 17·5 to 26·3 (mean 21·5 [2·7]) for the reference laboratory cohort. Six of 16 banked plasma samples from rapid diagnostic test-positive and altona-negative patients were positive by an alternative real-time RT-PCR assay (the Trombley assay); three (17%) of 18 samples from individuals who were negative by both the rapid diagnostic test and altona test were also positive by Trombley. INTERPRETATION: The ReEBOV rapid diagnostic test had 100% sensitivity and 92% specificity in both point-of-care and reference laboratory testing in this population (maximum cycle threshold 26·3). With two independent readers, the test detected all patients who were positive for Ebola virus by altona real-time RT-PCR; however, this benchmark itself had imperfect sensitivity. FUNDING: Abundance Foundation.


Subject(s)
Antigens, Viral/blood , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/diagnosis , Point-of-Care Systems , Reagent Kits, Diagnostic , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Ebolavirus/genetics , Ebolavirus/isolation & purification , Female , Humans , Immunoassay/methods , Infant , Male , Middle Aged , Observer Variation , RNA, Viral/blood , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...