Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 31(19): 3281-3289, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35567544

ABSTRACT

A disproportionate tall stature is the most evident manifestation in Marfan syndrome (MFS), a multisystem condition caused by mutations in the extracellular protein and TGFß modulator, fibrillin-1. Unlike cardiovascular manifestations, there has been little effort devoted to unravel the molecular mechanism responsible for long bone overgrowth in MFS. By combining the Cre-LoxP recombination system with metatarsal bone cultures, here we identify the outer layer of the perichondrium as the tissue responsible for long bone overgrowth in MFS mice. Analyses of differentially expressed genes in the fibrillin-1-deficient perichondrium predicted that loss of TGFß signaling may influence chondrogenesis in the neighboring epiphyseal growth plate (GP). Immunohistochemistry revealed that fibrillin-1 deficiency in the outer perichondrium is associated with decreased accumulation of latent TGFß-binding proteins (LTBPs)-3 and -4, and reduced levels of phosphorylated (activated) Smad2. Consistent with these findings, mutant metatarsal bones grown in vitro were longer and released less TGFß than the wild-type counterparts. Moreover, addition of recombinant TGFß1 normalized linear growth of mutant metatarsal bones. We conclude that longitudinal bone overgrowth in MFS is accounted for by diminished sequestration of LTBP-3 and LTBP-4 into the fibrillin-1-deficient matrix of the outer perichondrium, which results in less TGFß signaling locally and improper GP differentiation distally.


Subject(s)
Marfan Syndrome , Animals , Fibrillin-1/genetics , Fibrillin-2 , Fibrillins , Latent TGF-beta Binding Proteins/genetics , Latent TGF-beta Binding Proteins/metabolism , Marfan Syndrome/genetics , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL