Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 77(2): 410-423, 2022 08.
Article in English | MEDLINE | ID: mdl-35351523

ABSTRACT

BACKGROUND & AIMS: The hepatic manifestation of the metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), can lead to the development of hepatocellular carcinoma (HCC). Despite a strong causative link, NAFLD-HCC is often underrepresented in systematic genome explorations. METHODS: Herein, tumor-normal pairs from 100 patients diagnosed with NAFLD-HCC were subject to next-generation sequencing. Bioinformatic analyses were performed to identify key genomic, epigenomic and transcriptomic events associated with the pathogenesis of NAFLD-HCC. Establishment of primary patient-derived NAFLD-HCC culture was used as a representative human model for downstream in vitro investigations of the underlying CTNNB1 S45P driver mutation. A syngeneic immunocompetent mouse model was used to further test the involvement of CTNNB1mutand TNFRSF19 in reshaping the tumor microenvironment. RESULTS: Mutational processes operative in the livers of patients with NAFLD inferred susceptibility to tumor formation through defective DNA repair pathways. Dense promoter mutations and dysregulated transcription factors accentuated activated transcriptional regulation in NAFLD-HCC, in particular the enrichment of MAZ-MYC activities. Somatic events common in HCCs arising from NAFLD and viral hepatitis B infection underscore similar driver pathways, although an incidence shift highlights CTNNB1mut dominance in NAFLD-HCC (33%). Immune exclusion correlated evidently with CTNNB1mut. Chromatin immunoprecipitation-sequencing integrated with transcriptome and immune profiling revealed a unique transcriptional axis, wherein CTNNB1mut leads to an upregulation of TNFRSF19 which subsequently represses senescence-associated secretory phenotype-like cytokines (including IL6 and CXCL8). This phenomenon could be reverted by the Wnt-modulator ICG001. CONCLUSIONS: The unique mutational processes in the livers of patients with NAFLD and NAFLD-HCC allude to a "field effect" involving a gain-of-function role of CTNNB1 mutations in immune exclusion. LAY SUMMARY: The increasing prevalence of metabolic syndrome in adult populations means that NAFLD is poised to be the major cause of liver cancer in the 21st century. We showed a strong "field effect" in the livers of patients with NAFLD, wherein activated ß-catenin was involved in reshaping the tumor-immune microenvironment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Receptors, Tumor Necrosis Factor , beta Catenin , Adult , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Hepatitis B , Humans , Immune Evasion , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mutation , Non-alcoholic Fatty Liver Disease/genetics , Receptors, Tumor Necrosis Factor/genetics , Tumor Microenvironment , beta Catenin/genetics , beta Catenin/metabolism
2.
Int J Cancer ; 133(10): 2284-95, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23649311

ABSTRACT

Apart from ß-catenin accumulation, loss of 3p21 is one of the most frequent genetic alterations in numerous malignancies including nasopharyngeal carcinoma (NPC). Herein, we characterized a novel candidate tumor suppressor gene (TSG) CACNA2D3, a voltage-dependent subunit alpha 2 delta 3 of a calcium channel complex. Downregulation of CACNA2D3 was frequently detected in primary NPCs and NPC cell lines compared with their nontumorigenic counterparts. Attenuated CACNA2D3 expression may be associated with loss of heterozygosity (LOH) at intragenic single-nucleotide polymorphism sites (rs589281, rs1449325 and rs6797113) and/or epigenetic silencing by methylation and histone deacetylation. Given the extensive effects of calcium in cancer, we then investigated the tumor suppressive role and underlying mechanism of CACNA2D3 in the development and progression of NPC. CACNA2D3 was stably transfected into NPC cell lines (C666 and SUNE1) at levels comparative with the normal nasopharynx, alongside siRNA-mediated silencing in an immortalized nasopharyngeal epithelial cell line (NP69) to conduct in vivo and in vitro functional assays. Our findings show that CACNA2D3-mediated increase in intracellular calcium (Ca2+) can induce mitochondrial-mediated apoptosis and activation of NLK (through the Wnt/Ca2+ pathway) to antagonize Wnt signaling-mediated anchorage-dependent and independent cell proliferation (via CCND1 and CMYC), invasion (via MMP7) and epithelial-to-mesynchemal transition (via SNAIL). As the expression pattern of calcium channels and their degree of functionality can change with the progression of cancer, CACNA2D3 may indeed be a promising biomarker for NPC. Our study also warrants further exploration in the potential therapeutic use of existing epigenetic targeting drugs (e.g., 5-azacytidine, SAHA) to reconstitute CACNA2D3-associated tumor suppression in NPC.


Subject(s)
Calcium Channels/genetics , Genes, Tumor Suppressor , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Apoptosis/genetics , Calcium/metabolism , Calcium Channels/metabolism , Carcinoma , Cell Line, Tumor , Cell Proliferation , Disease Progression , Down-Regulation , Epigenesis, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/metabolism , Nasopharynx/metabolism , Nasopharynx/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...