Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Sci Total Environ ; 923: 171371, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432364

ABSTRACT

The wide application of benzophenones (BPs), such as benzophenone-3 (BP3), as an ingredient in sunscreens, cosmetics, coatings, and plastics, has led to their global contamination in aquatic environments. Using the marine diatom Chaetoceros neogracilis as a model, this study assessed the toxic effects and mechanisms of BP3 and its two major metabolites (BP8 and BP1). The results showed that BP3 exhibited higher toxicity on C. neogracilis than BP8 and BP1, with their 72-h median effective concentrations being 0.4, 0.8 and 4 mg/L, respectively. Photosynthesis efficiencies were significantly reduced after exposure to environmentally relevant concentrations of the three benzophenones, while cell viability, membrane integrity, membrane potential, and metabolic activities could be further impaired at their higher concentrations. Comparative transcriptomic analysis, followed by gene ontology and KEGG pathway enrichment analyses unraveled that all the three tested benzophenones disrupted photosynthesis and nitrogen metabolism of the diatom through alteration of similar pathways. The toxic effect of BP3 was also attributable to its unique inhibitory effects on eukaryotic ribosome biosynthesis and DNA replication. Taken together, our findings underscore that benzophenones may pose a significant threat to photosynthesis, oxygen production, primary productivity, carbon fixation, and the nitrogen cycle of diatom in coastal waters worldwide.


Subject(s)
Cosmetics , Diatoms , Diatoms/metabolism , Sunscreening Agents/toxicity , Sunscreening Agents/metabolism , Cosmetics/metabolism , Benzophenones/toxicity , Benzophenones/metabolism
2.
Toxicology ; 484: 153413, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36581016

ABSTRACT

A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Environmental Pollutants , Animals , Humans , Transcriptome , Epigenesis, Genetic , Endocrine Disruptors/toxicity , Chromatin , Mammals/genetics
4.
Adv Sci (Weinh) ; 9(26): e2200562, 2022 09.
Article in English | MEDLINE | ID: mdl-35712764

ABSTRACT

G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report  for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.


Subject(s)
Angiotensin II , Neoplasms , Angiotensin II/metabolism , Animals , Mice , Neoplasms/genetics , Neoplasms/therapy , RNA/metabolism , Receptors, G-Protein-Coupled/genetics , Renin-Angiotensin System
5.
Cancers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36612021

ABSTRACT

Hypoxia reprograms cancer stem cells. Nur77, an orphan nuclear receptor, highly expresses and facilitates colorectal cancer (CRC) stemness and metastasis under a hypoxic microenvironment. However, safe and effective small molecules that target Nur77 for CSC depletion remain unexplored. Here, we report our identification of the ginsenoside compound K (CK) as a new ligand of Nur77. CK strongly inhibits hypoxia-induced CRC sphere formation and CSC phenotypes in a Nur77-dependent manner. Hypoxia induces an intriguing Nur77-Akt feed-forward loop, resulting in reinforced PI3K/Akt signaling that is druggable by targeting Nur77. CK directly binds and modulates Nur77 phosphorylation to block the Nur77-Akt activation loop by disassociating Nur77 from the p63-bound Dicer promoter. The transcription of Dicer that is silenced under a hypoxia microenvironment is thus reactivated by CK. Consequently, the expression and processing capability of microRNA let-7i-5p are significantly increased, which targets PIK3CA mRNA for decay. The in vivo results showed that CK suppresses cancer stemness and metastasis without causing significant adverse effects. Given that the majority of FDA-approved and currently clinically tested PI3K/Akt inhibitors are reversible ATP-competitive kinase antagonists, targeting Nur77 for PI3K/Akt inactivation may provide an alternative strategy to overcoming concerns about drug selectivity and safety. The mechanistic target identification provides a basis for exploring CK as a promising nutraceutical against CRC.

6.
Front Genet ; 12: 710143, 2021.
Article in English | MEDLINE | ID: mdl-34408775

ABSTRACT

Humans are regularly and continuously exposed to ionizing radiation from both natural and artificial sources. Cumulating evidence shows adverse effects of ionizing radiation on both male and female reproductive systems, including reduction of testis weight and sperm count and reduction of female germ cells and premature ovarian failure. While most of the observed effects were caused by DNA damage and disturbance of DNA repairment, ionizing radiation may also alter DNA methylation, histone, and chromatin modification, leading to epigenetic changes and transgenerational effects. However, the molecular mechanisms underlying the epigenetic changes and transgenerational reproductive impairment induced by low-dose radiation remain largely unknown. In this study, two different types of human ovarian cells and two different types of testicular cells were exposed to low dose of ionizing radiation, followed by bioinformatics analysis (including gene ontology functional analysis and Ingenuity Pathway Analysis), to unravel and compare epigenetic effects and pathway changes in male and female reproductive cells induced by ionizing radiation. Our findings showed that the radiation could alter the expression of gene cluster related to DNA damage responses through the control of MYC. Furthermore, ionizing radiation could lead to gender-specific reproductive impairment through deregulation of different gene networks. More importantly, the observed epigenetic modifications induced by ionizing radiation are mediated through the alteration of chromatin remodeling and telomere function. This study, for the first time, demonstrated that ionizing radiation may alter the epigenome of germ cells, leading to transgenerational reproductive impairments, and correspondingly call for research in this new emerging area which remains almost unknown.

7.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34338780

ABSTRACT

One of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein-Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses. Compared to 2D monolayers, the 3D spheroids showed significant increases in migration capacity, stemness characteristics, hypoxia and drug resistance. Co-culture with endothelial cells, which mimics essential interactions in the tumor microenvironment, effectively enhanced spheroid dissemination. Furthermore, RNA sequencing revealed significant changes at the transcriptional level in 3D spheroids compared to expression in 2D monolayers. In particular, we identified known (VEGF, AKT and mTOR) and novel (Wnt-ß-catenin and Eph-ephrin) cell signaling pathways that are activated in NPC spheroids. Targeting these pathways in 3D spheroids using FDA-approved drugs was effective in monoculture and co-culture. These findings provide the first demonstration of the establishment of EBV-positive and EBV-negative NPC 3D spheroids with features that resemble advanced and metastatic NPCs. Furthermore, we show that NPC spheroids have potential use in identifying new drug targets.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Cell Line, Tumor , Endothelial Cells/metabolism , Ephrins , Herpesvirus 4, Human/metabolism , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Signal Transduction , Tumor Microenvironment , beta Catenin/genetics , beta Catenin/metabolism
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33883283

ABSTRACT

Vimentin is a cytoskeletal intermediate filament protein that plays pivotal roles in tumor initiation, progression, and metastasis, and its overexpression in aggressive cancers predicted poor prognosis. Herein described is a highly effective antitumor and antimetastatic metal complex [PtII(C^N^N)(NHC2Bu)]PF6 (Pt1a; HC^N^N = 6-phenyl-2,2'-bipyridine; NHC= N-heterocyclic carbene) that engages vimentin via noncovalent binding interactions with a distinct orthogonal structural scaffold. Pt1a displays vimentin-binding affinity with a dissociation constant of 1.06 µM from surface plasmon resonance measurements and fits into a pocket between the coiled coils of the rod domain of vimentin with multiple hydrophobic interactions. It engages vimentin in cellulo, disrupts vimentin cytoskeleton, reduces vimentin expression in tumors, suppresses xenograft growth and metastasis in different mouse models, and is well tolerated, attributable to biotransformation to less toxic and renal-clearable platinum(II) species. Our studies uncovered the practical therapeutic potential of platinum(II)‒NHC complexes as effective targeted chemotherapy for combating metastatic and cisplatin-resistant cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Lung Neoplasms/drug therapy , Organoplatinum Compounds/therapeutic use , Vimentin/drug effects , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Female , HCT116 Cells , Humans , Lung Neoplasms/secondary , Mice , Mice, Nude , Molecular Dynamics Simulation , Organoplatinum Compounds/metabolism , Organoplatinum Compounds/pharmacology , Rats , Vimentin/metabolism , Xenograft Model Antitumor Assays
9.
Oncogene ; 40(1): 97-111, 2021 01.
Article in English | MEDLINE | ID: mdl-33082557

ABSTRACT

As a result of the hostile microenvironment, metabolic alterations are required to enable the malignant growth of cancer cells. To understand metabolic reprogramming during metastasis, we conducted shotgun proteomic analysis of highly metastatic (HM) and non-metastatic (NM) ovarian cancer cells. The results suggest that the genes involved in fatty-acid (FA) metabolism are upregulated, with consequent increases of phospholipids with relatively short FA chains (myristic acid, MA) in HM cells. Among the upregulated proteins, ACSL1 expression could convert the lipid profile of NM cells to that similar of HM cells and make them highly aggressive. Importantly, we demonstrated that ACSL1 activates the AMP-activated protein kinase and Src pathways via protein myristoylation and finally enhances FA beta oxidation. Patient samples and tissue microarray data also suggested that omentum metastatic tumours have higher ACSL1 expression than primary tumours and a strong association with poor clinical outcome. Overall, our data reveal that ACSL1 enhances cancer metastasis by regulating FA metabolism and myristoylation.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Coenzyme A Ligases/metabolism , Fatty Acids/metabolism , Ovarian Neoplasms/pathology , Proteomics/methods , Up-Regulation , Animals , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Lipidomics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Ovarian Neoplasms/metabolism , Prognosis , Signal Transduction , Tumor Microenvironment
10.
J Am Chem Soc ; 142(24): 10769-10779, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32441923

ABSTRACT

Molecules that are capable of disrupting cellular ion homeostasis offer unique opportunities to treat cancer. However, previously reported synthetic ion transporters showed limited value, as promiscuous ionic disruption caused toxicity to both healthy cells and cancer cells indiscriminately. Here we report a simple yet efficient synthetic K+ transporter that takes advantage of the endogenous subcellular pH gradient and membrane potential to site-selectively mediate K+/H+ transport on the mitochondrial and lysosomal membranes in living cells. Consequent mitochondrial and lysosomal damages enhanced cytotoxicity to chemo-resistant ovarian cancer stem cells (CSCs) via apoptosis induction and autophagy suppression with remarkable selectivity (up to 47-fold). The eradication of CSCs blunted tumor formation in mice. We believe this strategy can be exploited in the structural design and applications of next-generation synthetic cation transporters for the treatment of cancer and other diseases related to dysfunctional K+ channels.


Subject(s)
Neoplastic Stem Cells/metabolism , Organelles/metabolism , Potassium/metabolism , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Ion Transport , Molecular Structure , Neoplastic Stem Cells/chemistry , Organelles/chemistry , Potassium/chemistry
11.
Theranostics ; 10(3): 1230-1244, 2020.
Article in English | MEDLINE | ID: mdl-31938062

ABSTRACT

Rationale: Glycogen synthase kinase-3ß (GSK-3ß) plays key roles in metabolism and many cellular processes. It was recently demonstrated that overexpression of GSK-3ß can confer tumor growth. However, the expression and function of GSK-3ß in hepatocellular carcinoma (HCC) remain largely unexplored. This study is aimed at investigating the role and therapeutic target value of GSK-3ß in HCC. Methods: We firstly clarified the expression of GSK-3ß in human HCC samples. Given that deviated retinoid signalling is critical for HCC development, we studied whether GSK-3ß could be involved in the regulation. Since sorafenib is currently used to treat HCC, the involvement of GSK-3ß in sorafenib treatment response was determined. Co-immunoprecipitation, GST pull down, in vitro kinase assay, luciferase reporter and chromatin immunoprecipitation were used to explore the molecular mechanism. The biological readouts were examined with MTT, flow cytometry and animal experiments. Results: We demonstrated that GSK-3ß is highly expressed in HCC and associated with shorter overall survival (OS). Overexpression of GSK-3ß confers HCC cell colony formation and xenograft tumor growth. Tumor-associated GSK-3ß is correlated with reduced expression of retinoic acid receptor-ß (RARß), which is caused by GSK-3ß-mediated phosphorylation and heterodimerization abrogation of retinoid X receptor (RXRα) with RARα on RARß promoter. Overexpression of functional GSK-3ß impairs retinoid response and represses sorafenib anti-HCC effect. Inactivation of GSK-3ß by tideglusib can potentiate 9-cis-RA enhancement of sorafenib sensitivity (tumor inhibition from 48.3% to 93.4%). Efficient induction of RARß by tideglusib/9-cis-RA is required for enhanced therapeutic outcome of sorafenib, which effect is greatly inhibited by knocking down RARß. Conclusions: Our findings demonstrate that GSK-3ß is a disruptor of retinoid signalling and a new resistant factor of sorafenib in HCC. Targeting GSK-3ß may be a promising strategy for HCC treatment in clinic.


Subject(s)
Carcinoma, Hepatocellular , Glycogen Synthase Kinase 3 beta/physiology , Liver Neoplasms, Experimental , Sorafenib , Tretinoin/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Survival/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha/metabolism , Retinoid X Receptor beta/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use
12.
Molecules ; 24(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277214

ABSTRACT

Ginseng is a group of cosmopolitan plants with more than a dozen species belonging to the genus Panax in the family Araliaceae that has a long history of use in traditional Chinese medicine (TCM). Among the bioactive constituents extracted from ginseng, ginseng saponins are a group of natural steroid glycosides and triterpene saponins found exclusively throughout the plant. Studies have shown that these ginseng saponins play a significant role in exerting multiple therapeutic effects. This review covers their chemical structure and classification, as well as their pharmacological activities, including their regulatory effects on immunomodulation, their anticancer effects, and their functions in the central nervous and cardiovascular systems. The general benefits of ginseng saponins for boosting physical vitality and improving quality of life are also discussed. The review concludes with fruitful directions for future research in the use of ginseng saponins as effective therapeutic agents.


Subject(s)
Panax/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saponins/chemistry , Saponins/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Carbohydrates/chemistry , Central Nervous System/drug effects , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Molecular Structure , Structure-Activity Relationship
13.
J Cell Mol Med ; 23(7): 4569-4581, 2019 07.
Article in English | MEDLINE | ID: mdl-31037837

ABSTRACT

Although invasive epithelial ovarian cancer (IOC) and low malignant potential ovarian tumour (LMP) are similar, they are associated with different outcomes and treatment strategies. The current accuracy in distinguishing these diseases is unsatisfactory, leading to delays or unnecessary treatments. We compared the molecular signature of IOC and LMP cases by analysing their transcriptomic data and re-clustered them according to these data rather than the pathological dissection. We identified that FAM83D was highly expressed in IOC. To verify the role of FAM83D in the progression and metastasis, we used the isogenic ovarian cancer metastatic models, highly metastatic cells (HM) and non-metastatic cells (NM). Overexpression of FAM83D significantly promoted cell proliferation, migration and spheroid formation. This was consistent with previous data showing that high FAM83D expression is associated with poor prognosis in cancer patients. Moreover, similar to the HM cells, the FAM83D-overexpressing NM cells demonstrated stronger phosphorylation of the epidermal growth factor receptor (EGFR) and c-Raf. This indicates that the action of FAM83D is mediated by the activation of the EGFR pathway. Taken together, this report suggested that FAM83D might be an excellent molecular marker to discriminate between IOC and LMP.


Subject(s)
Cell Cycle Proteins/metabolism , Disease Progression , Microtubule-Associated Proteins/metabolism , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, SCID , Microtubule-Associated Proteins/genetics , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , ROC Curve , Signal Transduction , Survival Analysis , Transcriptome/genetics , Up-Regulation/genetics
14.
J Exp Clin Cancer Res ; 38(1): 116, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30845964

ABSTRACT

BACKGROUND: Angiotensin II (ANGII) and its receptor (AGTR1) have been proposed as significant contributors to metastasis in multiple cancers. Further, high AGTR1 levels are associated with poor epithelial ovarian cancer (EOC) outcomes. However, the mechanistic basis for these effects is unknown. Recent studies have suggested that ovarian cancer metastasis is highly dependent on the formation of multicellular spheroids (MCS). To understand the associations between the ANGII/AGTR1 pathway and cancer outcomes, we evaluated the effects of ANGII on MCS formation by ovarian cancer cells and used a proteomic approach to analyze the mechanistic basis. METHODS: We used the data from the GENT database and immunohistochemistry staining to assess the AGTR1 expression in epithelial ovarian cancer (EOC) patients and to assess its role in cancer progression. Colony formation assay, 3D culture assay, and transwell assays were used to analyze the effect of ANGII on the MCS formation and cell migration. The signaling pathways of AGTR1 and transactivation of epidermal growth factor receptor (EGFR) transactivation were investigated by the western blotting analysis. Xenograft models were used to determine the role of AGTR1 in ovarian cancer metastasis. ANGII release from ovarian cancer cells and ANGII levels in the EOC ascites fluid were measured by immunoassay. A shotgun proteomic approach was used to explore the detail molecular mechanism. Modulation of lipid desaturation and endoplasmic reticulum stress were verified by the in vitro and in vivo functional assays. RESULTS: AGTR1 expression was negatively correlated with EOC prognosis. AGTR1activation significantly enhanced the MCS formation and cell migration. ANGII triggered both of the classical AGTR1 pathway and the EGFR transactivation. ANGII administration increased peritoneal metastasis. In addition, ovarian cancer cells secreted ANGII and enhanced cancer metastasis in a positive feedback manner. Based on the proteomic data, lipid desaturation was activated by induction of stearoyl-CoA desaturase-1 (SCD1), which suggests that inhibition of SCD1 may significantly reduce MCS formation by increasing endoplasmic reticulum stress. CONCLUSIONS: ANGII promotes MCS formation and peritoneal metastasis of EOC cells. AGTR1 activation increases the lipid desaturation via SCD1 upregulation, which ultimately reduces endoplasmic reticulum stress in MCS. This mechanism explained the association between high levels of AGTR1 and poor clinical outcomes in EOC patients.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Peritoneal Neoplasms/genetics , Receptor, Angiotensin, Type 1/genetics , Stearoyl-CoA Desaturase/genetics , Angiotensin II/genetics , Angiotensin II/metabolism , Animals , Carcinoma, Ovarian Epithelial/pathology , Cell Movement/genetics , Endoplasmic Reticulum Stress/genetics , ErbB Receptors/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lipid Metabolism/genetics , Lipids/genetics , Mice , Neoplasm Metastasis , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Prognosis , Proteomics , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Xenograft Model Antitumor Assays
15.
Environ Sci Technol ; 53(7): 3917-3928, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30844260

ABSTRACT

Hypoxia is a pressing environmental problem in both marine and freshwater ecosystems globally, and this problem will be further exacerbated by global warming in the coming decades. Recently, we reported that hypoxia can cause transgenerational impairment of sperm quality and quantity in fish (in F0, F1, and F2 generations) through DNA methylome modifications. Here, we provide evidence that female fish ( Oryzias melastigma) exposed to hypoxia exhibit reproductive impairments (follicle atresia and retarded oocyte development), leading to a drastic reduction in hatching success in the F2 generation of the transgenerational group, although they have never been exposed to hypoxia. Further analyses show that the observed transgenerational impairments in ovarian functions are related to changes in the DNA methylation and expression pattern of two gene clusters that are closely associated with stress-induced cell cycle arrest and cell apoptosis. The observed epigenetic and transgenerational alterations suggest that hypoxia may pose a significant threat to the sustainability of natural fish populations.


Subject(s)
Ecosystem , Oryzias , Animals , DNA Methylation , Female , Hypoxia , Male , Reproduction
16.
Toxicol Lett ; 281: 139-151, 2017 Nov 05.
Article in English | MEDLINE | ID: mdl-28965971

ABSTRACT

Zearalenone (ZEA) has long been recognized as a xenoestrogen, while the endocrine disrupting effects of aflatoxin B1 (AFB1) have been identified recently. Due to co-occurrence and endocrine disrupting potentials of ZEA and AFB1, it was hypothesized that co-exposure to ZEA and AFB1 might affect breast cancer cell growth. Consequently, the aim of this study was to evaluate the combined effects of ZEA and AFB1 (1nM-100nM) on cell growth and cell cycle progression, using a human breast cancer cell line MCF-7. Our results showed that ZEA and AFB1 produced significant interactive effects on cell growth, DNA synthesis and cell cycle progression. While ZEA promoted growth, DNA synthesis and cell cycle progression, AFB1 was cytotoxic and counteracted the effects of ZEA. ZEA altered the expression of several breast cancer related genes, whereas AFB1 had minimal effects on gene expression. With the use of specific inhibitors, ERα, GPER and MAPK pathways were found to be responsible for ZEA's effects on cell growth; while MAPK pathways might be involved in cytotoxic effects by AFB1. This study is first to report the effects of co-exposure of ZEA and AFB1 on breast cancer cell growth, possibly through ER dependent pathway. This suggested that endocrine-disrupting mycotoxins that co-occur in human food can interact and influence human health. Future work on interactive effects of endocrine-disrupting mycotoxins or other xenoestrogens is warranted, which will contribute to improved risk assessments.


Subject(s)
Aflatoxin B1/toxicity , Cell Cycle/drug effects , Gene Expression Regulation, Neoplastic , Zearalenone/toxicity , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Profiling , Humans , MCF-7 Cells
17.
Cancer Lett ; 411: 150-161, 2017 12 28.
Article in English | MEDLINE | ID: mdl-28989054

ABSTRACT

Presence of Met receptor tyrosine kinase in the nucleus of cells has been reported. However, the functions of Met which expresses in the nucleus (nMet) remain elusive. In this study, we found that nMet was increased in 89% of HCC tumorous tissues when compared with the corresponding non-tumorous liver tissues. nMet expression increased progressively along HCC development and significantly correlated with cirrhosis, poorer cellular differentiation, venous invasion, late stage HCC and poorer overall survival. Western blot analysis revealed that nMet is a 48-kDa protein comprising the carboxyl terminal of Met receptor. Induced expression of nMet promoted HCC cell growth, migration and invasiveness in vitro and tumorigenesis and pulmonary metastasis in vivo. Luciferase assay showed that nMet activated NF-κB pathway. Indeed, p-IKKα/ß and nuclear p-p65 were higher in nMet stable cells than in the control cells. Perturbation of TAK1/NF-κB axis abrogated the aggressiveness of HCC cells, both in vitro and in vivo. In conclusion, nMet was overexpressed and as a potential prognostic biomarker of HCC. Functionally, nMet accelerated HCC tumorigenesis and metastasis via the activation of TAK1/NF-κB pathway.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-met/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/physiology , HEK293 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/genetics , Neoplasm Metastasis , Proto-Oncogene Proteins c-met/biosynthesis , Proto-Oncogene Proteins c-met/genetics , Transfection , Up-Regulation
18.
Article in English | MEDLINE | ID: mdl-28439256

ABSTRACT

Ovarian cancer is the seventh most common cancer in women and the most lethal gynecological cancer, causing over 151,000 deaths worldwide each year. Dysregulated production of endocrine hormones, known to have pluripotent effects on cell function through the activation of receptor signaling pathways, is believed to be a high-risk factor for ovarian cancer. An increasing body of evidence suggests that endocrine G protein-coupled receptors (GPCRs) are involved in the progression and metastasis of ovarian neoplasms. GPCRs are attractive drug targets because their activities are regulated by more than 25% of all drugs approved by the Food and Drug Administration. Therefore, understanding the role of endocrine GPCRs during ovarian cancer progression and metastasis will allow for the development of novel strategies to design effective chemotherapeutic drugs against malignant ovarian tumors. In this review, we address the signaling pathways and functional roles of several key endocrine GPCRs that are related to the cause, progression, and metastasis of ovarian cancer.

19.
Sci Rep ; 7(1): 348, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28336971

ABSTRACT

We recently demonstrated that retinoic acid receptor-γ (RARγ) is overexpressed and acts as a tumor promoter in hepatocellular carcinoma (HCC). The oncogenic activity of RARγ is mainly attributed to its physiological interaction with p85α regulatory subunit of PI3K leading to constitutive activation of AKT. Here we report RARγ as a negative regulator of p53 signaling and thus extend the oncogenic potential of RARγ to a new role in controlling the balance between AKT and p53. A natural flavonoid acacetin is then identified to be capable of modulating RARγ-dependent AKT-p53 network. It specifically binds to RARγ and inhibits all-trans retinoic acid (atRA) stimulation of RARγ transactivation. However, the anticancer action of acacetin is independent on its modulation of RARγ-driven transcriptional activity. Acacetin induces cancer cell apoptosis through antagonizing the non-genomic effect of RARγ on AKT and p53. When bound to RARγ, acacetin prevents RARγ from its activation of AKT followed by recovery of the normal p53 signaling. Given the implication of AKT-p53 dysregulation in most HCC, targeting the non-genomic signaling of RARγ that switches AKT-p53 from a pro-survival to a pro-apoptotic program in cancer cells should be a promising strategy for developing novel anti-HCC drugs.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Carcinoma, Hepatocellular/metabolism , Flavones/administration & dosage , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Receptors, Retinoic Acid/metabolism , Animals , Apoptosis , Genes, p53 , HEK293 Cells , Humans , Mice, Inbred BALB C , Oncogenes , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , bcl-2-Associated X Protein/metabolism , Retinoic Acid Receptor gamma
20.
Oncotarget ; 8(16): 25897-25914, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-27825116

ABSTRACT

Chemoresistance is a major clinical problem compromising the successful treatment of cancer. One exciting approach is the eradication of cancer stem/tumor-initiating cells (jointly CSCs), which account for tumor initiation, progression, and drug resistance. Here we show for the first time, with mechanism-based evidence, that ginsenoside-Rb1, a natural saponin isolated from the rhizome of Panax quinquefolius and notoginseng, exhibits potent cytotoxicity on CSCs. Rb1 and its metabolite compound K could effectively suppress CSC self-renewal without regrowth. Rb1 and compound K treatment also sensitized the CSCs to clinically relevant doses of cisplatin and paclitaxel. These effects were associated with the Wnt/ß-catenin signaling pathway by downregulating ß-catenin/T-cell factor-dependent transcription and expression of its target genes ATP-binding cassette G2 and P-glycoprotein. We also identified reversal of epithelial-to-mesenchymal transition as a new player in the Rb1 and compound K-mediated inhibition of CSCs. Rb1 and compound K treatment also inhibited the self-renewal of CSCs derived from ovarian carcinoma patients as well as in xenograft tumor model. Moreover, we did not observe toxicity in response to doses of Rb1 and compound K that produced an anti-CSC effect. Therefore, Rb1 should be explored further as a promising nutraceutical prototype of treating refractory tumors.


Subject(s)
Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Ginsenosides/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Wnt Signaling Pathway/drug effects , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mice , Mitogen-Activated Protein Kinases/metabolism , Ovarian Neoplasms , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...