Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mucosal Immunol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492745

ABSTRACT

Suppurative lung disease and wheezing are common respiratory diseases of childhood, however, due to poor understanding of underlying pathobiology, there are limited treatment options and disease recurrence is common. We aimed to profile the pulmonary and systemic immune response in children with wheeze and chronic suppurative lung disease for identification of endotypes that can inform improved clinical management. We used clinical microbiology data, highly multiplexed flow cytometry and immunoassays to compare pulmonary [bronchoalveolar lavage (BAL)] and systemic immunity in children with lung disease and controls. Unsupervised analytical approaches were applied to BAL immune data to explore biological endotypes. We identified two endotypes that were analogous in both frequency and immune signature across both respiratory diseases. The hyper-inflammatory endotype had a 12-fold increase in neutrophil infiltration and upregulation of 14 soluble signatures associated with type 2 inflammation and cell recruitment to tissue. The non-inflammatory endotype was not significantly different from controls. We showed these endotypes are measurable in a clinical setting and can be defined by measuring only three immune factors in BAL. We identified hyper-inflammatory and non-inflammatory endotypes common across pediatric wheeze and chronic suppurative lung disease that, if validated in future studies, have the potential to inform clinical management.

3.
Immunogenetics ; 74(3): 327-346, 2022 06.
Article in English | MEDLINE | ID: mdl-35229174

ABSTRACT

Duplicates of genes for major histocompatibility complex (MHC) molecules can be subjected to selection independently and vary markedly in their evolutionary rates, sequence polymorphism, and functional roles. Therefore, without a thorough understanding of their copy number variation (CNV) in the genome, the MHC-dependent fitness consequences within a species could be misinterpreted. Studying the intra-specific CNV of this highly polymorphic gene, however, has long been hindered by the difficulties in assigning alleles to loci and the lack of high-quality genomic data. Here, using the high-quality genome of the Siamese fighting fish (Betta splendens), a model for mate choice studies, and the whole-genome sequencing (WGS) data of 17 Betta species, we achieved locus-specific amplification of their three classical MHC class II genes - DAB1, DAB2, and DAB3. By performing quantitative PCR and depth-of-coverage analysis using the WGS data, we revealed intra-specific CNV at the DAB3 locus. We identified individuals that had two allelic copies (i.e., heterozygous or homozygous) or one allele (i.e., hemizygous) and individuals without this gene. The CNV was due to the deletion of a 20-kb-long genomic region harboring both the DAA3 and DAB3 genes. We further showed that the three DAB genes were under different modes of selection, which also applies to their corresponding DAA genes that share similar pattern of polymorphism. Our study demonstrates a combined approach to study CNV within a species, which is crucial for the understanding of multigene family evolution and the fitness consequences of CNV.


Subject(s)
DNA Copy Number Variations , Genes, MHC Class II , Alleles , Animals , DNA Copy Number Variations/genetics , Evolution, Molecular , Fishes/genetics , Genes, MHC Class II/genetics , Phylogeny
4.
Sci Rep ; 11(1): 18773, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548502

ABSTRACT

Extensive loss of natural wetlands caused by changes in land use largely diminishes the food resources essential for the survival of migratory waterbirds. Globally, the decline in waterbird populations in East Asia is the most serious, with 64% of these populations showing a decreasing trend. In this study, we applied DNA metabarcoding to examine the spatiotemporal variations and diversities in the dietary compositions of migratory waterbirds in a natural/artificial wetland complex in Asia. By investigating 110 fecal samples from the endangered black-faced spoonbill (Platalea minor) wintering in the wetland, our results show that P. minor had a broad dietary spectrum. The birds fed on at least 26 species in the classes Actinopterygii and Malacostraca, with Mugiliformes, Cichliformes, and Gobiiformes being the main taxa in their diets. Our results also demonstrated clear patterns of the spatiotemporal variations between the roosting groups and intraspecific variations between the individuals, which potentially reflect some of their feeding habits, and the probable usage of different habitat types in the wetland complex. Using high-throughput sequencing, we were able to elucidate the food resources that are critical to P. minor non-invasively, this method can also be used to provide invaluable information for the conservation of many other waterbird species.


Subject(s)
Birds/genetics , Birds/physiology , DNA Barcoding, Taxonomic , Diet , Endangered Species , Animals , Feces/chemistry , High-Throughput Screening Assays , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...