Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Int J Cancer ; 153(3): 489-498, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36919377

ABSTRACT

Methylation marks of exposure to health risk factors may be useful markers of cancer risk as they might better capture current and past exposures than questionnaires, and reflect different individual responses to exposure. We used data from seven case-control studies nested within the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases = 3123). Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption were calculated based on published data as weighted averages of methylation values. Rate ratios (RR) and 95% confidence intervals for association with cancer risk were estimated using conditional logistic regression and expressed per SD increase of the MS, with and without adjustment for health-related confounders. The contribution of MS to discriminate cases from controls was evaluated using the area under the curve (AUC). After confounder adjustment, we observed: large associations (RR = 1.5-1.7) with lung cancer risk for smoking MS; moderate associations (RR = 1.2-1.3) with urothelial cancer risk for smoking MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small associations (RR = 1.1-1.2) for BMI and alcohol MS with several cancer types and cancer overall. Generally small AUC increases were observed after inclusion of several MS in the same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell neoplasms: +8%). Methylation scores for smoking, BMI and alcohol consumption show independent associations with cancer risk, and may provide some improvements in risk prediction.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Male , Humans , Body Mass Index , Cohort Studies , Smoking/adverse effects , Smoking/genetics , Risk Factors , Alcohol Drinking/adverse effects , DNA Methylation , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Colorectal Neoplasms/genetics
3.
Fam Cancer ; 22(3): 313-317, 2023 07.
Article in English | MEDLINE | ID: mdl-36708485

ABSTRACT

DNA methylation marks that are inherited from parents to offspring are known to play a role in cancer risk and could explain part of the familial risk for cancer. We therefore conducted a genome-wide search for heritable methylation marks associated with prostate cancer risk. Peripheral blood DNA methylation was measured for 133 of the 469 members of 25 multiple-case prostate cancer families, using the EPIC array. We used these families to systematically search the genome for methylation marks with Mendelian patterns of inheritance, then we tested the 1,000 most heritable marks for association with prostate cancer risk. After correcting for multiple testing, 41 heritable methylation marks were associated with prostate cancer risk. Separate analyses, based on 869 incident cases and 869 controls from a prospective cohort study, showed that 9 of these marks near the metastable epiallele VTRNA2-1 were also nominally associated with aggressive prostate cancer risk in the population.


Subject(s)
DNA Methylation , Prostatic Neoplasms , Male , Humans , Prospective Studies , Prostatic Neoplasms/genetics , Inheritance Patterns , Epigenesis, Genetic
4.
Environ Int ; 171: 107704, 2023 01.
Article in English | MEDLINE | ID: mdl-36542997

ABSTRACT

BACKGROUND: Wildfire-related fine particulate matter (PM2.5) has many adverse health impacts, but its impacts on human epigenome are unknown. We aimed to evaluate the associations between long-term exposure to wildfire-related PM2.5 and blood DNA methylation, and whether the associations differ from those with non-wildfire-related PM2.5. METHODS: We studied 479 Australian women comprising 132 twin pairs and 215 of their sisters. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on 3-year (year of blood collection and previous two years) average wildfire-related and non-wildfire-related PM2.5 at 0.01°×0.01° spatial resolution were created by combining information from satellite observations, chemical transport models, and ground-based observations. Exposure data were linked to each participant's home address, assuming the address did not change during the exposure window. For DNA methylation of each cytosine-guanine dinucleotide (CpG), and for global DNA methylation represented by the average of all measured CpGs or CpGs in repetitive elements, we evaluated their associations with wildfire- or non-wildfire-related PM2.5 using a within-sibship analysis controlling for factors shared between siblings and other important covariates. Differentially methylated regions (DMRs) were defined by comb-p and DMRcate. RESULTS: The 3-year average wildfire-related PM2.5 (range: 0.3 to 7.6 µg/m3, mean: 1.6 µg/m3) was negatively, but not significantly (p-values greater than 0.05) associated with all seven global DNA methylation measures. There were 26 CpGs and 33 DMRs associated with wildfire-related PM2.5 (Bonferroni adjusted p-value < 0.05) mapped to 47 genes enriched for pathways related to inflammatory regulation and platelet activation. These genes have been related to many human diseases or phenotypes e.g., cancer, mental disorders, diabetes, obesity, asthma, blood pressure. These CpGs, DMRs and enriched pathways did not overlap with the 1 CpG and 7 DMRs associated with non-wildfire-related PM2.5. CONCLUSIONS: Long-term exposure to wildfire-related PM2.5 was associated with various blood DNA methylation signatures in Australian women, and these were distinct from those associated with non-wildfire-related PM2.5.


Subject(s)
Air Pollutants , Wildfires , Humans , Female , Air Pollutants/analysis , DNA Methylation , Australia , Particulate Matter/analysis
5.
Epigenetics ; 17(12): 1838-1847, 2022 12.
Article in English | MEDLINE | ID: mdl-35726372

ABSTRACT

Lifestyle-related phenotypes have been shown to be heritable and associated with DNA methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, alcohol consumption, and higher body mass index (BMI) moderates the effect of these phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify genetic predisposition to these phenotypes using training (N = 7,431) and validation (N = 4,307) samples. Using paired genetic-methylation data (N = 4,307), gene-environment interactions (i.e., PGS × lifestyle) were assessed using linear mixed-effects models with outcomes: 1) methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol consumption (459 CpGs), and BMI (85 CpGs) and 2) two epigenetic ageing measures, PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P = 1 × 10-14), ~0.6% (P = 2 × 10-7), and ~8.7% (P = 7 × 10-87) of variance in smoking initiation, alcohol consumption, and BMI, respectively. Nominally significant interaction effects (P < 0.05) were found at 61, 14, and 7 CpGs for smoking, alcohol consumption, and BMI, respectively. There was strong evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the association of smoking with GrimAge was attenuated in participants genetically predisposed to smoking (interaction term: -0.022, standard error [SE] = 0.012, P = 0.058) and that the association of alcohol consumption with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction term: -0.030, SE = 0.015, P = 0.041). In conclusion, genetic susceptibility to unhealthy lifestyles did not strongly modify the association between observed lifestyle behaviour and blood DNA methylation. Potential associations were observed for epigenetic ageing measures, which should be replicated in additional studies.


Subject(s)
DNA Methylation , Genetic Predisposition to Disease , Humans , Smoking/adverse effects , Smoking/genetics , Body Mass Index , Alcohol Drinking/genetics , Epigenesis, Genetic
6.
EBioMedicine ; 77: 103927, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35301182

ABSTRACT

BACKGROUND: Previous findings for the genetic and environmental contributions to DNA methylation variation were for limited age ranges only. We investigated the lifespan contributions and their implications for human health for the first time. METHODS: 1,720 monozygotic twin (MZ) pairs and 1,107 dizygotic twin (DZ) pairs aged 0-92 years were included. Familial correlations (i.e., correlations between twins) for 353,681 methylation sites were estimated and modelled as a function of twin pair cohabitation history. FINDINGS: The methylome average familial correlation was around zero at birth (MZ pair: -0.01; DZ pair: -0.04), increased with the time of twins living together during childhood at rates of 0.16 (95%CI: 0.12-0.20) for MZ pairs and 0.13 (95%CI: 0.07-0.20) for DZ pairs per decade, and decreased with the time of living apart during adulthood at rates of 0.026 (95%CI: 0.019-0.033) for MZ pairs and 0.027 (95%CI: 0.011-0.043) for DZ pairs per decade. Neither the increasing nor decreasing rate differed by zygosity (both P>0.1), consistent with cohabitation environment shared by twins, rather than genetic factors, influencing the methylation familial correlation changes. Familial correlations for 6.6% (23,386/353,681) sites changed with twin pair cohabitation history. These sites were enriched for high heritability, proximal promoters, and epigenetic/genetic associations with various early-life factors and late-life health conditions. INTERPRETATION: Early life strongly influences DNA methylation variation across the lifespan, and the effects are stronger for heritable sites and sites biologically relevant to the regulation of gene expression. Early life could affect late-life health through influencing DNA methylation. FUNDING: Victorian Cancer Agency, Cancer Australia, Cure Cancer Foundation.


Subject(s)
DNA Methylation , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Epigenomics , Humans , Infant , Infant, Newborn , Longevity/genetics , Middle Aged , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Young Adult
7.
Cells ; 10(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34943892

ABSTRACT

Genetic variants in FOXO3 are associated with longevity. Here, we assessed whether blood DNA methylation at FOXO3 was associated with cancer risk, survival, and mortality. We used data from eight prospective case-control studies of breast (n = 409 cases), colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869), and urothelial (n = 428) cancer and B-cell lymphoma (n = 438). Case-control pairs were matched on age, sex, country of birth, and smoking (lung cancer study). Conditional logistic regression was used to assess associations between cancer risk and methylation at 45 CpGs of FOXO3 included on the HumanMethylation450 assay. Mixed-effects Cox models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations with cancer survival (total n = 2286 deaths). Additionally, using data from 1088 older participants, we assessed associations of FOXO3 methylation with overall and cause-specific mortality (n = 354 deaths). Methylation at a CpG in the first exon region of FOXO3 (6:108882981) was associated with gastric cancer survival (HR = 2.39, 95% CI: 1.60-3.56, p = 1.9 × 10-5). Methylation at three CpGs in TSS1500 and gene body was associated with lung cancer survival (p < 6.1 × 10-5). We found no evidence of associations of FOXO3 methylation with cancer risk and mortality. Our findings may contribute to understanding the implication of FOXO3 in longevity.


Subject(s)
DNA Methylation/genetics , Forkhead Box Protein O3/blood , Forkhead Box Protein O3/genetics , Neoplasms/blood , Neoplasms/mortality , Adult , Aged , Case-Control Studies , Cohort Studies , CpG Islands/genetics , Female , Humans , Longevity/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Survival Analysis
8.
BMC Res Notes ; 14(1): 394, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689793

ABSTRACT

OBJECTIVE: In previous studies using Illumina Infinium methylation arrays, we have identified DNA methylation marks associated with cancer predisposition and progression. In the present study, we have sought to find appropriate technology to both technically validate our data and expand our understanding of DNA methylation in these genomic regions. Here, we aimed to assess the repeatability of methylation measures made using QIAseq targeted methyl panel and to compare them with those obtained from the Illumina HumanMethylation450 (HM450K) assay. We included in the analysis high molecular weight DNA extracted from whole blood (WB) and DNA extracted from formalin-fixed paraffin-embedded tissues (FFPE). RESULTS: The repeatability of QIAseq-methylation measures was assessed at 40 CpGs, using the Intraclass Correlation Coefficient (ICC). The mean ICCs and 95% confidence intervals (CI) were 0.72 (0.62-0.81), 0.59 (0.47-0.71) and 0.80 (0.73-0.88) for WB, FFPE and both sample types combined, respectively. For technical replicates measured using QIAseq and HM450K, the mean ICCs (95% CI) were 0.53 (0.39-0.68), 0.43 (0.31-0.56) and 0.70 (0.59-0.80), respectively. Bland-Altman plots indicated good agreement between QIAseq and HM450K measurements. These results demonstrate that the QIAseq targeted methyl panel produces reliable and reproducible methylation measurements across the 40 CpGs that were examined.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , Genomics , Oligonucleotide Array Sequence Analysis , Paraffin Embedding
9.
Cancer Epidemiol Biomarkers Prev ; 30(12): 2197-2206, 2021 12.
Article in English | MEDLINE | ID: mdl-34526299

ABSTRACT

BACKGROUND: Self-reported information may not accurately capture smoking exposure. We aimed to evaluate whether smoking-associated DNA methylation markers improve urothelial cell carcinoma (UCC) risk prediction. METHODS: Conditional logistic regression was used to assess associations between blood-based methylation and UCC risk using two matched case-control samples: 404 pairs from the Melbourne Collaborative Cohort Study (MCCS) and 440 pairs from the Women's Health Initiative (WHI) cohort. Results were pooled using fixed-effects meta-analysis. We developed methylation-based predictors of UCC and evaluated their prediction accuracy on two replication data sets using the area under the curve (AUC). RESULTS: The meta-analysis identified associations (P < 4.7 × 10-5) for 29 of 1,061 smoking-associated methylation sites, but these were substantially attenuated after adjustment for self-reported smoking. Nominally significant associations (P < 0.05) were found for 387 (36%) and 86 (8%) of smoking-associated markers without/with adjustment for self-reported smoking, respectively, with same direction of association as with smoking for 387 (100%) and 79 (92%) markers. A Lasso-based predictor was associated with UCC risk in one replication data set in MCCS [N = 134; odds ratio per SD (OR) = 1.37; 95% CI, 1.00-1.90] after confounder adjustment; AUC = 0.66, compared with AUC = 0.64 without methylation information. Limited evidence of replication was found in the second testing data set in WHI (N = 440; OR = 1.09; 95% CI, 0.91-1.30). CONCLUSIONS: Combination of smoking-associated methylation marks may provide some improvement to UCC risk prediction. Our findings need further evaluation using larger data sets. IMPACT: DNA methylation may be associated with UCC risk beyond traditional smoking assessment and could contribute to some improvements in stratification of UCC risk in the general population.


Subject(s)
Carcinoma, Transitional Cell , Cohort Studies , DNA Methylation , Female , Humans , Prospective Studies , Smoking/adverse effects
10.
Environ Pollut ; 285: 117700, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34380236

ABSTRACT

Little is known about the association between ambient temperature and DNA methylation, which is a potential biological process through which ambient temperature affects health. This study aimed to evaluate the association between ambient temperature and DNA methylation across human genome. We included 479 Australian women, including 132 twin pairs and 215 sisters of these twins. Blood-derived DNA methylation was measured using the HumanMethylation450 BeadChip array. Data on average ambient temperature during eight different exposure windows [lag0d (the blood draw day), lag0-7d (the current day and previous seven days prior to blood draw), lag0-14d, lag0-21d, lag0-28d, lag0-90d, lag0-180d, and lag0-365d)] was linked to each participant's home address. For each cytosine-guanine dinucleotide (CpG), we evaluated the association between its methylation level and temperature using generalized estimating equations (GEE), adjusting for important covariates. We used comb-p and DMRcate to identify differentially methylated regions (DMRs). We identified 31 CpGs at which blood DNA methylation were significantly associated with ambient temperature with false discovery rate [FDR] < 0.05. There were 82 significant DMRs identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Most of these CpGs and DMRs only showed association with temperature during one specific exposure window. These CpGs and DMRs were mapped to 85 genes. These related genes have been related to many human chronic diseases or phenotypes (e.g., diabetes, arthritis, breast cancer, depression, asthma, body height) in previous studies. The signals of short-term windows (lag0d and lag0-21d) showed enrichment in biological processes related to cell adhesion. In conclusion, short-, medium-, and long-term exposures to ambient temperature were all associated with blood DNA methylation, but the target genomic loci varied by exposure window. These differential methylation signals may serve as potential biomarkers to understand the health impacts of temperature.


Subject(s)
DNA Methylation , DNA , Australia , Epigenesis, Genetic , Female , Humans , Temperature
11.
Environ Health Perspect ; 129(8): 87007, 2021 08.
Article in English | MEDLINE | ID: mdl-34460342

ABSTRACT

BACKGROUND: High surrounding greenness has many health benefits and might contribute to slower biological aging. However, very few studies have evaluated this from the perspective of epigenetics. OBJECTIVES: We aimed to evaluate the association between surrounding greenness and biological aging based on DNA methylation. METHODS: We derived Horvath's DNA methylation age (DNAmAge), Hannum's DNAmAge, PhenoAge, and GrimAge based on DNA methylation measured in peripheral blood samples from 479 Australian women in 130 families. Measures of DNAmAge acceleration (DNAmAgeAC) were derived from the residuals after regressing each DNAmAge metric on chronological age. Greenness was represented by satellite-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) metrics within 300-, 500-, 1,000-, and 2,000-m buffers surrounding participant addresses. Greenness-DNAmAgeAC associations were estimated using a within-sibship design fitted by linear mixed effect models, adjusting for familial clustering and important covariates. RESULTS: Greenness metrics were associated with significantly lower DNAmAgeAC based on GrimAge acceleration, suggesting slower biological aging with higher greenness based on both NDVI and EVI in 300-2,000m buffer areas. For example, each interquartile range increase in NDVI within 1,000m was associated with a 0.59 (95% CI: 0.18, 1.01)-year decrease in GrimAge acceleration. Greenness was also inversely associated with three of the eight components of GrimAge, specifically, DNA methylation-based surrogates of serum cystatin-C, serum growth differentiation factor 15, and smoking pack years. Associations between greenness and biological aging measured by Horvath's and Hannum's DNAmAgeAC were less consistent, and depended on neighborhood socioeconomic status. No significant associations were estimated for PhenoAge acceleration. DISCUSSION: Higher surrounding greenness was associated with slower biological aging, as indicated by GrimAge age acceleration, in Australian women. Associations were also evident for three individual components of GrimAge, but were inconsistent for other measures of biological aging. Additional studies are needed to confirm our results. https://doi.org/10.1289/EHP8793.


Subject(s)
Aging , DNA Methylation , Australia , Epigenesis, Genetic , Epigenomics/methods , Female , Humans
12.
NAR Cancer ; 3(3): zcab028, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34316715

ABSTRACT

Acquired PARP inhibitor (PARPi) resistance in BRCA1- or BRCA2-mutant ovarian cancer often results from secondary mutations that restore expression of functional protein. RAD51C is a less commonly studied ovarian cancer susceptibility gene whose promoter is sometimes methylated, leading to homologous recombination (HR) deficiency and PARPi sensitivity. For this study, the PARPi-sensitive patient-derived ovarian cancer xenograft PH039, which lacks HR gene mutations but harbors RAD51C promoter methylation, was selected for PARPi resistance by cyclical niraparib treatment in vivo. PH039 acquired PARPi resistance by the third treatment cycle and grew through subsequent treatment with either niraparib or rucaparib. Transcriptional profiling throughout the course of resistance development showed widespread pathway level changes along with a marked increase in RAD51C mRNA, which reflected loss of RAD51C promoter methylation. Analysis of ovarian cancer samples from the ARIEL2 Part 1 clinical trial of rucaparib monotherapy likewise indicated an association between loss of RAD51C methylation prior to on-study biopsy and limited response. Interestingly, the PARPi resistant PH039 model remained platinum sensitive. Collectively, these results not only indicate that PARPi treatment pressure can reverse RAD51C methylation and restore RAD51C expression, but also provide a model for studying the clinical observation that PARPi and platinum sensitivity are sometimes dissociated.

13.
Cancers (Basel) ; 13(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070516

ABSTRACT

We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50-70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 × 10-16) and young people without CRC (p = 5.8 × 10-6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.

14.
Cancers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919912

ABSTRACT

To investigate age- and sex-specific DNA methylation alterations related to cancer risk and survival, we used matched case-control studies of colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869) and urothelial (n = 428) cancers, and mature B-cell lymphoma (n = 438). Linear mixed-effects models were conducted to identify age-, sex- and age-by-sex-associated methylation markers using a discovery (controls)-replication (cases) strategy. Replication was further examined using summary statistics from Generation Scotland (GS). Associations between replicated markers and risk of and survival from cancer were assessed using conditional logistic regression and Cox models (hazard ratios (HR)), respectively. We found 32,659, 23,141 and 48 CpGs with replicated associations for age, sex and age-by-sex, respectively. The replication rates for these CpGs using GS summary data were 94%, 86% and 91%, respectively. Significant associations for cancer risk and survival were identified at some individual age-related CpGs. Opposite to previous findings using epigenetic clocks, there was a strong negative trend in the association between epigenetic drift and risk of colorectal cancer. Methylation at two CpGs overlapping TMEM49 and ARX genes was associated with survival of overall (HR = 0.91, p = 7.7 × 10-4) and colorectal (HR = 1.52, p = 1.8 × 10-4) cancer, respectively, with significant age-by-sex interaction. Our results may provide markers for cancer early detection and prognosis prediction.

15.
Environ Int ; 154: 106556, 2021 09.
Article in English | MEDLINE | ID: mdl-33862401

ABSTRACT

BACKGROUND: DNA methylation is a potential biological mechanism through which residential greenness affects health, but little is known about its association with greenness and whether the association could be modified by genetic background. We aimed to evaluate the association between surrounding greenness and genome-wide DNA methylation and potential gene-greenness interaction effects on DNA methylation. METHODS: We measured blood-derived DNA methylation using the HumanMethylation450 BeadChip array (Illumina) for 479 Australian women, including 66 monozygotic, 66 dizygotic twin pairs, and 215 sisters of these twins. Surrounding greenness was represented by Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) within 300, 500, 1000 or 2000 m surrounding participants' home addresses. For each cytosine-guanine dinucleotide (CpG), the associations between its methylation level and NDVI or EVI were evaluated by generalized estimating equations, after adjusting for age, education, marital status, area-level socioeconomic status, smoking behavior, cell-type proportions, and familial clustering. We used comb-p and DMRcate to identify significant differentially methylated regions (DMRs). For each significant CpG, we evaluated the interaction effects of greenness and single-nucleotide polymorphisms (SNPs) within ±1 Mb window on its methylation level. RESULTS: We found associations between surrounding greenness and blood DNA methylation for one CpG (cg04720477, mapped to the promoter region of CNP gene) with false discovery rate [FDR] < 0.05, and for another 9 CpGs with 0.05 ≤ FDR < 0.10. For two of these CpGs, we found 33 SNPs significantly (FDR < 0.05) modified the greenness-methylation association. There were 35 significant DMRs related to surrounding greenness that were identified by both comb-p (Sidak p-value < 0.01) and DMRcate (FDR < 0.01). Those CpGs and DMRs were mapped to genes related to many human diseases, such as mental health disorders and neoplasms as well as nutritional and metabolic diseases. CONCLUSIONS: Surrounding greenness was associated with blood DNA methylation of many loci across human genome, and this association could be modified by genetic variations.


Subject(s)
DNA Methylation , Epigenome , Australia , Epigenesis, Genetic , Female , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Smoking
16.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802562

ABSTRACT

VTRNA2-1 is a metastable epiallele with accumulating evidence that methylation at this region is heritable, modifiable and associated with disease including risk and progression of cancer. This study investigated the influence of genetic variation and other factors such as age and adult lifestyle on blood DNA methylation in this region. We first sequenced the VTRNA2-1 gene region in multiple-case breast cancer families in which VTRNA2-1 methylation was identified as heritable and associated with breast cancer risk. Methylation quantitative trait loci (mQTL) were investigated using a prospective cohort study (4500 participants with genotyping and methylation data). The cis-mQTL analysis (334 variants ± 50 kb of the most heritable CpG site) identified 43 variants associated with VTRNA2-1 methylation (p < 1.5 × 10-4); however, these explained little of the methylation variation (R2 < 0.5% for each of these variants). No genetic variants elsewhere in the genome were found to strongly influence VTRNA2-1 methylation. SNP-based heritability estimates were consistent with the mQTL findings (h2 = 0, 95%CI: -0.14 to 0.14). We found no evidence that age, sex, country of birth, smoking, body mass index, alcohol consumption or diet influenced blood DNA methylation at VTRNA2-1. Genetic factors and adult lifestyle play a minimal role in explaining methylation variability at the heritable VTRNA2-1 cluster.


Subject(s)
DNA Methylation/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Breast Neoplasms/genetics , Case-Control Studies , CpG Islands/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Prospective Studies , Quantitative Trait Loci/genetics
17.
Clin Epigenetics ; 13(1): 11, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461604

ABSTRACT

BACKGROUND: Tumour DNA methylation profiling has shown potential to refine disease subtyping and improve the diagnosis and prognosis prediction of breast cancer. However, limited data exist regarding invasive lobular breast cancer (ILBC). Here, we investigated the genome-wide variability of DNA methylation levels across ILBC tumours and assessed the association between methylation levels at the variably methylated regions and overall survival in women with ILBC. METHODS: Tumour-enriched DNA was prepared by macrodissecting formalin-fixed paraffin embedded (FFPE) tumour tissue from 130 ILBCs diagnosed in the participants of the Melbourne Collaborative Cohort Study (MCCS). Genome-wide tumour DNA methylation was measured using the HumanMethylation 450K (HM450K) BeadChip array. Variably methylated regions (VMRs) were identified using the DMRcate package in R. Cox proportional hazards regression models were used to assess the association between methylation levels at the ten most significant VMRs and overall survival. Gene set enrichment analyses were undertaken using the web-based tool Metaspace. Replication of the VMR and survival analysis findings was examined using data retrieved from The Cancer Genome Atlas (TCGA) for 168 ILBC cases. We also examined the correlation between methylation and gene expression for the ten VMRs of interest using TCGA data. RESULTS: We identified 2771 VMRs (P < 10-8) in ILBC tumours. The ten most variably methylated clusters were predominantly located in the promoter region of the genes: ISM1, APC, TMEM101, ASCL2, NKX6, HIST3H2A/HIST3H2BB, HCG4P3, HES5, CELF2 and EFCAB4B. Higher methylation level at several of these VMRs showed an association with reduced overall survival in the MCCS. In TCGA, all associations were in the same direction, however stronger than in the MCCS. The pooled analysis of the MCCS and TCGA data showed that methylation at four of the ten genes was associated with reduced overall survival, independently of age and tumour stage; APC: Hazard Ratio (95% Confidence interval) per one-unit M-value increase: 1.18 (1.02-1.36), TMEM101: 1.23 (1.02-1.48), HCG4P3: 1.37 (1.05-1.79) and CELF2: 1.21 (1.02-1.43). A negative correlation was observed between methylation and gene expression for CELF2 (R = - 0.25, P = 0.001), but not for TMEM101 and APC. CONCLUSIONS: Our study identified regions showing greatest variability across the ILBC tumour genome and found methylation at several genes to potentially serve as a biomarker of survival for women with ILBC.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/physiopathology , DNA Methylation , Survival Analysis , Adult , Aged , Cohort Studies , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Middle Aged , Prognosis
18.
JNCI Cancer Spectr ; 5(1)2021 02.
Article in English | MEDLINE | ID: mdl-33442664

ABSTRACT

Background: We previously investigated the association between 5 "first-generation" measures of epigenetic aging and cancer risk in the Melbourne Collaborative Cohort Study. This study assessed cancer risk associations for 3 recently developed methylation-based biomarkers of aging: PhenoAge, GrimAge, and predicted telomere length. Methods: We estimated rate ratios (RRs) for the association between these 3 age-adjusted measures and risk of colorectal (N = 813), gastric (N = 165), kidney (N = 139), lung (N = 327), mature B-cell (N = 423), prostate (N = 846), and urothelial (N = 404) cancer using conditional logistic regression models. We also assessed associations by time since blood draw and by cancer subtype, and we investigated potential nonlinearity. Results: We observed relatively strong associations of age-adjusted PhenoAge with risk of colorectal, kidney, lung, mature B-cell, and urothelial cancers (RR per SD was approximately 1.2-1.3). Similar findings were obtained for age-adjusted GrimAge, but the association with lung cancer risk was much larger (RR per SD = 1.82, 95% confidence interval [CI] = 1.44 to 2.30), after adjustment for smoking status, pack-years, starting age, time since quitting, and other cancer risk factors. Most associations appeared linear, larger than for the first-generation measures, and were virtually unchanged after adjustment for a large set of sociodemographic, lifestyle, and anthropometric variables. For cancer overall, the comprehensively adjusted rate ratio per SD was 1.13 (95% CI = 1.07 to 1.19) for PhenoAge and 1.12 (95% CI = 1.05 to 1.20) for GrimAge and appeared larger within 5 years of blood draw (RR = 1.29, 95% CI = 1.15 to 1.44 and 1.19, 95% CI = 1.06 to 1.33, respectively). Conclusions: The methylation-based measures PhenoAge and GrimAge may provide insights into the relationship between biological aging and cancer and be useful to predict cancer risk, particularly for lung cancer.


Subject(s)
Aging/blood , DNA Methylation , Neoplasms/blood , Telomere , Adult , Age Factors , Aged , Aging/genetics , Biomarkers/blood , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Confidence Intervals , DNA/blood , Epigenesis, Genetic , Female , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/genetics , Logistic Models , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/genetics , Male , Middle Aged , Neoplasms/genetics , Prospective Studies , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Risk Factors , Smoking , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Telomere Homeostasis , Urologic Neoplasms/blood , Urologic Neoplasms/genetics
19.
Cancer Prev Res (Phila) ; 14(2): 233-240, 2021 02.
Article in English | MEDLINE | ID: mdl-32958588

ABSTRACT

DNA methylation in peripheral blood is a potential biomarker of gastric cancer risk which could be used for early detection. We conducted a prospective case-control study nested within the Melbourne Collaborative Cohort Study. Genomic DNA was prepared from blood samples collected a median of 12 years before diagnosis for cases (N = 168). Controls (N = 163) were matched to cases on sex, year of birth, country of birth, and blood sample type using incidence density sampling. Genome-wide DNA methylation was measured using the Infinium HumanMethylation450K Beadchip. Global measures of DNA methylation were defined as the median methylation M value, calculated for each of 13 CpG subsets representing genomic function, mean methylation and location, and reliability of measurement. Conditional logistic regression was conducted to assess associations between these global measures of methylation and gastric cancer risk, adjusting for Helicobacter pylori and other potential confounders. We tested nonlinear associations using quintiles of the global measure distribution. A genome-wide association study of DNA methylation and gastric cancer risk was also conducted (N = 484,989 CpGs) using conditional logistic regression, adjusting for potential confounders. Differentially methylated regions (DMR) were investigated using the R package DMRcate We found no evidence of associations with gastric cancer risk for individual CpGs or DMRs (P > 7.6 × 10-6). No evidence of association was observed with global measures of methylation (OR 1.07 per SD of overall median methylation; 95% confidence interval, 0.80-1.44; P = 0.65). We found no evidence that blood DNA methylation is prospectively associated with gastric cancer risk.Prevention Relevance: We studied DNA methylation in blood to try and predict who was at risk of gastric cancer before symptoms developed, by which stage survival is poor. We did not find any such markers, but the importance of early diagnosis in gastric cancer remains, and the search for markers continues.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Stomach Neoplasms/epidemiology , Adult , Aged , Case-Control Studies , CpG Islands/genetics , Female , Genome-Wide Association Study , Humans , Incidence , Male , Middle Aged , Neoplasm Staging , Prospective Studies , Reproducibility of Results , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics
20.
Int J Epidemiol ; 50(1): 105-115, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33169152

ABSTRACT

BACKGROUND: Prenatal exposure to maternal smoking is detrimental to child health but its association with risk of cancer has seldom been investigated. Maternal smoking induces widespread and long-lasting DNA methylation changes, which we study here for association with risk of cancer in adulthood. METHODS: Eight prospective case-control studies nested within the Melbourne Collaborative Cohort Study were used to assess associations between maternal-smoking-associated methylation marks in blood and risk of several cancers: breast (n = 406 cases), colorectal (n = 814), gastric (n = 166), kidney (n = 139), lung (n = 327), prostate (n = 847) and urothelial (n = 404) cancer and B-cell lymphoma (n = 426). We used conditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between cancer and five methylation scores calculated as weighted averages for 568, 19, 15, 28 and 17 CpG sites. Models were adjusted for confounders, including personal smoking history (smoking status, pack-years, age at starting and quitting) and methylation scores for personal smoking. RESULTS: All methylation scores for maternal smoking were strongly positively associated with risk of urothelial cancer. Risk estimates were only slightly attenuated after adjustment for smoking history, other potential confounders and methylation scores for personal smoking. Potential negative associations were observed with risk of lung cancer and B-cell lymphoma. No associations were observed for other cancers. CONCLUSIONS: We found that methylation marks of prenatal exposure to maternal smoking are associated with increased risk of urothelial cancer. Our study demonstrates the potential for using DNA methylation to investigate the impact of early-life, unmeasured exposures on later-life cancer risk.


Subject(s)
Neoplasms , Prenatal Exposure Delayed Effects , Adult , Child , Cohort Studies , DNA Methylation , Female , Humans , Male , Maternal Exposure/adverse effects , Neoplasms/epidemiology , Neoplasms/etiology , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/genetics , Prospective Studies , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...