Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 45(2): 577-587, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35404028

ABSTRACT

The aim of this study was to present our experience on clinical implementation of HyperArc including dosimetric comparison between VMAT and HyperArc plans and dosimetric verification of HyperArc. In this study, eleven previously treated cases of brain metastasis were selected from our brain stereotactic radiotherapy program. The cases were retrospectively planned using HyperArc technique and the plan quality was evaluated. In addition, dosimetric effects of HyperArc plan with different energies and using jaw tracking technique were evaluated. Furthermore, dosimetric verification of HyperArc plans was performed using ion chamber and radiochromic film. Our results of dosimetric comparison shows that HyperArc technique improved both conformity index and gradient index compared to VMAT plans. We also found that using 6MV flattening filter free (6MV-FFF) beam improves gradient index in HyperArc plans compared to using 6MV flattening filter beam. Furthermore, our results show that jaw tracking technique reduces the size of low dose volume while maintaining similar target coverage, conformity index, and gradient index. In our dosimetric verification study, results of ion chamber and film measurement indicate no significant difference between VMAT and HyperArc plans. In conclusion, HyperArc simplifies planning of stereotactic treatment for brain and improves the dosimetry in treatment plans. Additionally, HyperArc provides for a safe and efficient treatment delivery system for stereotactic treatments to brain.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
2.
J Fluoresc ; 21(1): 299-312, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20922469

ABSTRACT

Steep variations in concentration and temperature frequently occur in small fluid compartments such as those found in cells or microfluidic devices. A quantitative characterization of concentration and temperature gradients is therefore required before these systems can be fully understood. Although different spatially resolved fluorescence methods have been developed to measure either the temperature or the concentration of ions such as proton or calcium, often concentration measurements depend on temperature and vice versa. Here, we describe a method allowing simultaneous measurement of pH and temperature. This method is based on the detection of the blinking of the fluorescent pH indicator pyranine, a process due to its alternating between a basic form and an acidic form. Fluorescence correlation spectroscopy allows measuring both the protonation and deprotonation rates of pyranine, and each pair of rates can be uniquely related to a pair of pH and temperature values. We show, however, that the relationship between rates, pH and temperature, is very sensitive to the presence of other acid-base molecules in solution. We also show that it is influenced by the overall ionic strength of the solution, in a manner that depends on buffer composition.


Subject(s)
Arylsulfonates/chemistry , Hydrogen-Ion Concentration , Temperature , Osmolar Concentration , Spectrometry, Fluorescence , Thermodynamics
4.
J Microsc ; 226(Pt 1): 6-17, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17381704

ABSTRACT

Fluorescence excitation can result in the formation of reactive oxygen species and free radicals damaging to live cells. In the case of erythrocytes, reaction of these reactive oxygen species with membrane components causes large-scale morphological changes followed by cell haemolysis. In an effort to understand the origin of these morphological changes, we have studied the consequences of localized photodamage on the erythrocyte membrane. For this, we irradiated a small area of the cell membrane using a focused laser beam in the presence of an external photosensitizer. We observed the rapid formation of an invagination (approximately 1 microm deep) at the laser focus, long before photohaemolysis occurred. We measured the rate of invagination formation and the rate of cell haemolysis, using a combination of fluorescence contrast imaging (to detect the membrane position) with fluorescence correlation spectroscopy (to measure photosensitizer concentration). We found that the kinetics of both processes depend in a similar manner on light energy flux, fluorophore concentration and the presence of oxygen scavenger. This leads us to the conclusion that the observed invagination is due to the photooxidation of membrane-associated proteins, representing a precursor of cellular photohaemolysis. We then discuss two different molecular mechanisms (conformational change of the protein band 3 and detachment of the spectrin cytoskeleton from the lipid membrane) that may explain how the photodamage of membrane-associated proteins can lead to a deformation of the lipid bilayer.


Subject(s)
Erythrocyte Membrane/radiation effects , Erythrocytes/cytology , Lasers , Hemolysis , Humans , Image Processing, Computer-Assisted , Microscopy, Fluorescence/methods , Microscopy, Interference/methods , Spectrometry, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...