Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 26(10): 107960, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810233

ABSTRACT

In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but their role in longevity is unclear. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we uncovered an important role for lipid droplets in proteostasis and longevity. Using genome-wide RNAi screening, we identified several SQST-1 modulators, including lipid droplets-associated and aggregation-prone proteins. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan. Notably, a substantial amount of ubiquitinated proteins were found on lipid droplets. Reducing lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised, and significantly reduced the lifespan of long-lived daf-2 animals. Altogether, our study uncovered a key role for lipid droplets in C. elegans as a proteostatic mediator that modulates ubiquitinated protein accumulation, facilitates autophagy, and promotes longevity.

2.
Aging Cell ; 22(3): e13741, 2023 03.
Article in English | MEDLINE | ID: mdl-36419219

ABSTRACT

Transcription factor EB (TFEB) is a conserved master transcriptional activator of autophagy and lysosomal genes that modulates organismal lifespan regulation and stress resistance. As neurons can coordinate organism-wide processes, we investigated the role of neuronal TFEB in stress resistance and longevity. To this end, the Caenorhabditis elegans TFEB ortholog, hlh-30, was rescued panneuronally in hlh-30 loss of function mutants. While important in the long lifespan of daf-2 animals, neuronal HLH-30/TFEB was not sufficient to restore normal lifespan in short-lived hlh-30 mutants. However, neuronal HLH-30/TFEB rescue mediated robust improvements in the heat stress resistance of wildtype but not daf-2 animals. Notably, these mechanisms can be uncoupled, as neuronal HLH-30/TFEB requires DAF-16/FOXO to regulate longevity but not thermoresistance. Through further transcriptomics profiling and functional analysis, we discovered that neuronal HLH-30/TFEB modulates neurotransmission through the hitherto uncharacterized protein W06A11.1 by inducing peripheral mitochondrial fragmentation and organismal heat stress resistance in a non-cell autonomous manner. Taken together, this study uncovers a novel mechanism of heat stress protection mediated by neuronal HLH-30/TFEB.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Transcription Factors/metabolism , Longevity/genetics , Neurons/metabolism , Forkhead Transcription Factors/metabolism
3.
Prog Mol Biol Transl Sci ; 172: 325-373, 2020.
Article in English | MEDLINE | ID: mdl-32620247

ABSTRACT

Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.


Subject(s)
Autophagy , Caenorhabditis elegans/physiology , Models, Animal , Active Transport, Cell Nucleus , Aging/genetics , Aging/physiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagosomes/physiology , Autophagy/genetics , Autophagy/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Gene Expression Regulation, Developmental , Genetic Engineering/methods , Humans , Immunity, Innate , Infections/genetics , Infections/pathology , Inflammation/genetics , Inflammation/pathology , Larva , Lysosomes/physiology , Neoplasms/genetics , Neoplasms/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Peptides/physiology , Recombinant Proteins/metabolism , Species Specificity
4.
J Neurosci Methods ; 309: 132-142, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30189284

ABSTRACT

BACKGROUND: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models. This process could potentially be expedited by using simpler invertebrate systems, such as the nematode Caenorhabditis elegans. NEW METHOD: Head-bobbing convulsions were previously reported to be inducible by pentylenetetrazol (PTZ) in C. elegans with loss-of-function mutations in unc-49, which encodes a GABAA receptor. Given that epilepsy-linked mutations in human GABAA receptors are well documented, this could represent a clinically-relevant system for early-stage AED screens. However, the original agar plate-based assay is unsuited to large-scale screening and has not been validated for identifying AEDs. Therefore, we established an alternative streamlined, higher-throughput approach whereby mutants were treated with PTZ and AEDs via liquid-based incubation. RESULTS: Convulsions induced within minutes of PTZ exposure in unc-49 mutants were strongly inhibited by the established AED ethosuximide. This protective activity was independent of ethosuximide's suggested target, the T-type calcium channel, as a null mutation in the worm cca-1 ortholog did not affect ethosuximide's anticonvulsant action. COMPARISON WITH EXISTING METHOD: Our streamlined assay is AED-validated, feasible for higher throughput compound screens, and can facilitate insights into AED mechanisms of action. CONCLUSIONS: Based on an epilepsy-associated genetic background, this C. elegans unc-49 model of seizure-like activity presents an ethical, higher throughput alternative to conventional rodent seizure models for initial AED screens.


Subject(s)
Anticonvulsants/administration & dosage , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Seizures/prevention & control , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Convulsants/administration & dosage , Ethosuximide/administration & dosage , Pentylenetetrazole/administration & dosage , Receptors, GABA-A/genetics , Seizures/chemically induced
5.
Neurobiol Dis ; 118: 40-54, 2018 10.
Article in English | MEDLINE | ID: mdl-29940336

ABSTRACT

The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 µM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Succinimides/therapeutic use , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Animals , Animals, Genetically Modified , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Caenorhabditis elegans , Female , Male , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Succinimides/chemistry , TDP-43 Proteinopathies/pathology
6.
Mol Brain ; 9: 39, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27080240

ABSTRACT

BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while ß-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections.


Subject(s)
Ependymoglial Cells/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hypothalamus/metabolism , Neuroglia/metabolism , Thinness/metabolism , Aging/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Cell Count , Chromogranins , Female , GTP-Binding Protein alpha Subunits, Gs/deficiency , Gene Expression Profiling , Gene Expression Regulation , Genetic Loci , Mice , Nestin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Suprachiasmatic Nucleus/metabolism
7.
Mol Neurodegener ; 10: 54, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26496836

ABSTRACT

The original version of this article [1] unfortunately contained a mistake. The author list contained a spelling error for the author Hannah V. McCue. The original article has been corrected for this error. The corrected author list is given below:Xi Chen, Hannah V. McCue, Shi Quan Wong, Sudhanva S. Kashyap, Brian C. Kraemer, Jeff W. Barclay, Robert D. Burgoyne and Alan Morgan

8.
Mol Neurodegener ; 10: 51, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26419537

ABSTRACT

BACKGROUND: Many neurodegenerative diseases are associated with protein misfolding/aggregation. Treatments mitigating the effects of such common pathological processes, rather than disease-specific symptoms, therefore have general therapeutic potential. RESULTS: Here we report that the anti-epileptic drug ethosuximide rescues the short lifespan and chemosensory defects exhibited by C. elegans null mutants of dnj-14, the worm orthologue of the DNAJC5 gene mutated in autosomal-dominant adult-onset neuronal ceroid lipofuscinosis. It also ameliorates the locomotion impairment and short lifespan of worms expressing a human Tau mutant that causes frontotemporal dementia. Transcriptomic analysis revealed a highly significant up-regulation of DAF-16/FOXO target genes in response to ethosuximide; and indeed RNAi knockdown of daf-16 abolished the therapeutic effect of ethosuximide in the worm dnj-14 model. Importantly, ethosuximide also increased the expression of classical FOXO target genes and reduced protein aggregation in mammalian neuronal cells. CONCLUSIONS: We have revealed a conserved neuroprotective mechanism of action of ethosuximide from worms to mammalian neurons. Future experiments in mouse neurodegeneration models will be important to confirm the repurposing potential of this well-established anti-epileptic drug for treatment of human neurodegenerative diseases.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Ethosuximide/pharmacology , Forkhead Transcription Factors/genetics , Gene Expression/drug effects , Mutation/genetics , Animals , Caenorhabditis elegans , Disease Models, Animal , Phenotype , Signal Transduction/drug effects , Transcription Factors/metabolism
9.
Biochem Pharmacol ; 80(3): 410-21, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20416283

ABSTRACT

Liver injury associated with exposure to therapeutic agents that undergo hepatic metabolism can involve the formation of reactive metabolites. These may cause redox perturbation which can result in oxidative stress as well as protein modification leading to activation or inhibition of cellular transcriptional responses. Nevertheless, the effects of these challenges on more than one transcriptional pathway simultaneously remain unclear. We have investigated two transcription factors known to be sensitive to electrophilic stress and redox perturbation, Nrf2 and NF-kappaB, in mouse liver cells. Cellular stress was induced by the probes: N-acetyl-p-benzoquinineimine (NAPQI), the reactive metabolite of acetaminophen; dinitrochlorobenzene (DNCB), a model electrophile; and buthionine (S,R)-sulfoximine (BSO), an inhibitor of glutamate-cysteine ligase. NAPQI, DNCB and BSO can all cause glutathione (GSH) depletion; however only NAPQI and DNCB can covalently bind proteins. We also employed RNAi to manipulate Keap1 (the inhibitor of Nrf2), Nrf2 itself and NF-kappaB-p65, to understand their roles in the response to drug stress. All three chemicals induced Nrf2, but NF-kappaB binding activity was only increased after BSO treatment. In fact, NF-kappaB binding activity decreased after exposure to NAPQI and DNCB. While RNAi depletion of Keap1 led to reduced toxicity following exposure to DNCB, depletion of Nrf2 and NF-kappaB augmented toxicity. Interestingly, increased Nrf2 caused by Keap1 depletion was reversed by co-depletion of NF-kappaB. We demonstrate that Keap1/Nrf2 and NF-kappaB respond differently to electrophiles that bind proteins covalently and the redox perturbation associated with glutathione depletion, and that crosstalk may enable NF-kappaB to partly influence Nrf2 expression during cellular stress.


Subject(s)
Glutathione/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Modification, Translational/physiology , Transcription, Genetic/physiology , Animals , Cell Line , Glutathione/genetics , Liver/metabolism , Mice , Proteins/genetics , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL