Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712094

ABSTRACT

Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.

2.
Cell Rep ; 42(9): 113121, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37715952

ABSTRACT

Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single-cell RNA sequencing, we uncovered both direct and indirect paths by which resident SG progenitors ordinarily differentiate into sebocytes, including transit through a Krt5+PPARγ+ transitional basal cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair-follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR2 signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.


Subject(s)
Sebaceous Glands , Skin , Cell Differentiation , Hair Follicle , Epithelial Cells
3.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205445

ABSTRACT

Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single cell RNA-sequencing, we uncovered both direct and indirect paths by which these resident SG progenitors ordinarily differentiate into sebocytes, including transit through a PPARγ+Krt5+ transitional cell state. Upon skin injury, however, SG progenitors depart their niche, reepithelialize the wound, and are replaced by hair follicle-derived stem cells. Furthermore, following targeted genetic ablation of >99% of SGs from dorsal skin, these glands unexpectedly regenerate within weeks. This regenerative process is mediated by alternative stem cells originating from the hair follicle bulge, is dependent upon FGFR signaling, and can be accelerated by inducing hair growth. Altogether, our studies demonstrate that stem cell plasticity promotes SG durability following injury.

4.
Clin Cancer Res ; 29(13): 2501-2512, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37039710

ABSTRACT

PURPOSE: Perineural invasion (PNI) in oral cavity squamous cell carcinoma (OSCC) is associated with poor survival. Because of the risk of recurrence, patients with PNI receive additional therapies after surgical resection. Mechanistic studies have shown that nerves in the tumor microenvironment promote aggressive tumor growth. Therefore, in this study, we evaluated whether nerve density (ND) influences tumor growth and patient survival. Moreover, we assessed the reliability of artificial intelligence (AI) in evaluating ND. EXPERIMENTAL DESIGN: To investigate whether increased ND in OSCC influences patient outcome, we performed survival analyses. Tissue sections of OSCC from 142 patients were stained with hematoxylin and eosin and IHC stains to detect nerves and tumor. ND within the tumor bulk and in the adjacent 2 mm was quantified; normalized ND (NND; bulk ND/adjacent ND) was calculated. The impact of ND on tumor growth was evaluated in chick chorioallantoic-dorsal root ganglia (CAM-DRG) and murine surgical denervation models. Cancer cells were grafted and tumor size quantified. Automated nerve detection, applying the Halo AI platform, was compared with manual assessment. RESULTS: Disease-specific survival decreased with higher intratumoral ND and NND in tongue SCC. Moreover, NND was associated with worst pattern-of-invasion and PNI. Increasing the number of DRG, in the CAM-DRG model, increased tumor size. Reduction of ND by denervation in a murine model decreased tumor growth. Automated and manual detection of nerves showed high concordance, with an F1 score of 0.977. CONCLUSIONS: High ND enhances tumor growth, and NND is an important prognostic factor that could influence treatment selection for aggressive OSCC. See related commentary by Hondermarck and Jiang, p. 2342.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Animals , Mice , Artificial Intelligence , Reproducibility of Results , Neoplasm Invasiveness , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment
5.
Nat Commun ; 13(1): 7319, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443296

ABSTRACT

In endochondral bone development, bone-forming osteoblasts and bone marrow stromal cells have dual origins in the fetal cartilage and its surrounding perichondrium. However, how early perichondrial cells distinctively contribute to developing bones remain unidentified. Here we show using in vivo cell-lineage analyses that Dlx5+ fetal perichondrial cells marked by Dlx5-creER do not generate cartilage but sustainably contribute to cortical bone and marrow stromal compartments in a manner complementary to fetal chondrocyte derivatives under the regulation of Hedgehog signaling. Postnatally, Dlx5+ fetal perichondrial cell derivatives preferentially populate the diaphyseal marrow stroma with a dormant adipocyte-biased state and are refractory to parathyroid hormone-induced bone anabolism. Therefore, early perichondrial cells of the fetal cartilage are destined to become an adipogenic subset of stromal cells in postnatal diaphyseal bone marrow, supporting the theory that the adult bone marrow stromal compartments are developmentally prescribed within the two distinct cells-of-origins of the fetal bone anlage.


Subject(s)
Cartilage , Hedgehog Proteins , Adult , Humans , Bone and Bones , Bone Development , Chondrocytes
6.
Front Immunol ; 13: 1029818, 2022.
Article in English | MEDLINE | ID: mdl-36439142

ABSTRACT

This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.


Subject(s)
Acne Vulgaris , Dermatitis, Atopic , Adult , Adolescent , Humans , Immunity, Innate , Homeostasis , Dermatitis, Atopic/complications , Lipids
7.
Cell Rep ; 39(5): 110779, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508126

ABSTRACT

Basal cell carcinomas (BCCs) frequently possess immense mutational burdens; however, the functional significance of most of these mutations remains unclear. Here, we report that loss of Ptch1, the most common mutation that activates upstream Hedgehog (Hh) signaling, initiates the formation of nascent BCC-like tumors that eventually enter into a dormant state. However, rare tumors that overcome dormancy acquire the ability to hyperactivate downstream Hh signaling through a variety of mechanisms, including amplification of Gli1/2 and upregulation of Mycn. Furthermore, we demonstrate that MYCN overexpression promotes the progression of tumors induced by loss of Ptch1. These findings suggest that canonical mutations that activate upstream Hh signaling are necessary, but not sufficient, for BCC to fully progress. Rather, tumors likely acquire secondary mutations that further hyperactivate downstream Hh signaling in order to escape dormancy and enter a trajectory of uncontrolled expansion.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Hedgehog Proteins/genetics , Humans , Mutation/genetics , N-Myc Proto-Oncogene Protein/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Zinc Finger Protein GLI1/genetics
9.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35143422

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer that frequently carries an integrated Merkel cell polyomavirus (MCPyV) genome and expresses viral transforming antigens (TAgs). MCC tumor cells also express signature genes detected in skin-resident, postmitotic Merkel cells, including atonal bHLH transcription factor 1 (ATOH1), which is required for Merkel cell development from epidermal progenitors. We now report the use of in vivo cellular reprogramming, using ATOH1, to drive MCC development from murine epidermis. We generated mice that conditionally expressed MCPyV TAgs and ATOH1 in epidermal cells, yielding microscopic collections of proliferating MCC-like cells arising from hair follicles. Immunostaining of these nascent tumors revealed p53 accumulation and apoptosis, and targeted deletion of transformation related protein 53 (Trp53) led to development of gross skin tumors with classic MCC histology and marker expression. Global transcriptome analysis confirmed the close similarity of mouse and human MCCs, and hierarchical clustering showed conserved upregulation of signature genes. Our data establish that expression of MCPyV TAgs in ATOH1-reprogrammed epidermal cells and their neuroendocrine progeny initiates hair follicle-derived MCC tumorigenesis in adult mice. Moreover, progression to full-blown MCC in this model requires loss of p53, mimicking the functional inhibition of p53 reported in human MCPyV-positive MCCs.


Subject(s)
Carcinoma, Merkel Cell , Merkel cell polyomavirus , Polyomavirus Infections , Skin Neoplasms , Tumor Virus Infections , Animals , Antigens, Viral , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/pathology , Cellular Reprogramming , Merkel cell polyomavirus/genetics , Mice , Polyomavirus Infections/genetics , Polyomavirus Infections/pathology , Skin Neoplasms/pathology , Tumor Virus Infections/genetics , Tumor Virus Infections/pathology
10.
Exp Dermatol ; 30(4): 472-478, 2021 04.
Article in English | MEDLINE | ID: mdl-33025661

ABSTRACT

The emergence of hair is a defining event during mammalian skin development, but the cellular mechanisms leading to the opening of the hair follicle canal remain poorly characterized. Our previous studies have shown that early hair buds possess a central column of differentiated keratinocytes expressing Keratin 79 (K79), which marks the future hair follicle opening. Here, we report that during late embryogenesis and early postnatal development, K79+ cells at the distal tips of these columns downregulate E-cadherin, change shape, recede and undergo cell death. These changes likely occur independently of sebaceous glands and the growing hair shaft, and serve to create an orifice for hair to subsequently emerge. Defects in this process may underlie phenomena such as ingrown hair or may potentially contribute to upper hair follicle pathologies including acne, hidradenitis suppurativa and infundibular cysts.


Subject(s)
Hair Follicle/growth & development , Keratins/metabolism , Sebaceous Glands/metabolism , Skin Physiological Phenomena , Animals , Mice , Mice, Inbred C57BL
11.
Forensic Sci Int ; 313: 110260, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32485557

ABSTRACT

We report the use of the geometric design standard for road markings published in the "Standard Details of Road Elements" ('SDRE') by the Land Transport Authority ('LTA') of Singapore as a convenient and sufficiently accurate means of estimating distances between features of the roadway, particularly useful for performing speed analysis based on videos. In this study, onsite measurements (by measuring tape, total station or 3D laser scanner) from various locations in Singapore, as well as the corresponding distances based on Google Earth Pro, were compared with those estimated using the SDRE. We demonstrate herein that the SDRE estimated 85.7% of all corresponding onsite measurements to within ±5%, and can thus be relied upon for crash reconstruction. This study also evaluated the distance accuracies associated with using the geometric design standard (the SDRE) and Google Earth Pro, and determined that both methods were robust and accurate, with overall average absolute percentage errors of less than 1% and would be beneficial for obtaining measurements for crash reconstruction, especially when the site of interest is not accessible.

12.
Dev Cell ; 51(3): 326-340.e4, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31564613

ABSTRACT

Oil-secreting sebaceous glands (SGs) are critical for proper skin function; however, it remains unclear how different factors act together to modulate SG stem cells. Here, we provide functional evidence that each SG lobe is serviced by its own dedicated stem cell population. Upon ablating Notch signaling in different skin subcompartments, we find that this pathway exerts dual counteracting effects on SGs. Suppressing Notch in SG progenitors traps them in a hybrid state where stem and differentiation features become intermingled. In contrast, ablating Notch outside of the SG stem cell compartment indirectly drives SG expansion. Finally, we report that a K14:K5→K14:K79 keratin shift occurs during SG differentiation. Deleting K79 destabilizes K14 in sebocytes, and attenuates SGs and eyelid meibomian glands, leading to corneal ulceration. Altogether, our findings demonstrate that SGs integrate diverse signals from different niches and suggest that mutations incurred within one stem cell compartment can indirectly influence another.


Subject(s)
Sebaceous Glands/cytology , Skin/cytology , Stem Cell Niche , Stem Cells/cytology , Animals , Cell Differentiation , Female , Hedgehog Proteins/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Keratins/metabolism , Male , Meibomian Glands/metabolism , Mice, Knockout , Mutation/genetics , Receptors, Notch/genetics
13.
Exp Dermatol ; 28(4): 345-349, 2019 04.
Article in English | MEDLINE | ID: mdl-30033638

ABSTRACT

The uppermost aspect of the hair follicle, known as the infundibulum or hair canal, provides a passageway for hair shaft egress and sebum secretion. Recent studies have indicated that the infundibulum and sebaceous ducts are lined by molecularly distinct differentiated cells expressing markers including Keratin 79 and Gata6. Here, we ablated Gata6 from the skin and observed dilation of both the hair canal and sebaceous ducts, independent of gender and hair cycle stage. Constitutive loss of Gata6 yielded only a mild delay in depilation-induced entry into anagen, while unperturbed mutant mice possessed overtly normal skin and hair. Furthermore, we noted that Keratin 79 and Gata6 expression and localization did not depend upon each other. Our findings implicate Gata6 in maintaining the upper hair follicle and suggest that regulation of this transcription factor may be compromised in pathologies such as acne or infundibular cystic diseases that are characterized by abnormal expansion of this follicular domain.


Subject(s)
GATA6 Transcription Factor/genetics , Hair Follicle/pathology , Sebaceous Glands/pathology , Animals , Cell Nucleus/metabolism , Dilatation, Pathologic/genetics , Female , GATA6 Transcription Factor/metabolism , Hair Follicle/growth & development , Hair Follicle/metabolism , Keratins/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Regeneration/genetics , Sebaceous Glands/metabolism
14.
Mol Cell ; 72(2): 316-327.e5, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340023

ABSTRACT

Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11ß2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.


Subject(s)
Cilia/drug effects , Cilia/metabolism , Oxysterols/pharmacology , Animals , Cell Line , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , Signal Transduction/drug effects
15.
Cancer Cell ; 33(2): 229-243.e4, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29395868

ABSTRACT

Hedgehog (Hh) pathway inhibitors such as vismodegib are highly effective for treating basal cell carcinoma (BCC); however, residual tumor cells frequently persist and regenerate the primary tumor upon drug discontinuation. Here, we show that BCCs are organized into two molecularly and functionally distinct compartments. Whereas interior Hh+/Notch+ suprabasal cells undergo apoptosis in response to vismodegib, peripheral Hh+++/Notch- basal cells survive throughout treatment. Inhibiting Notch specifically promotes tumor persistence without causing drug resistance, while activating Notch is sufficient to regress already established lesions. Altogether, these findings suggest that the three-dimensional architecture of BCCs establishes a natural hierarchy of drug response in the tumor and that this hierarchy can be overcome, for better or worse, by modulating Notch.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Basal Cell/drug therapy , Receptors, Notch/drug effects , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Apoptosis/drug effects , Carcinoma, Basal Cell/pathology , Hedgehog Proteins/drug effects , Hedgehog Proteins/metabolism , Humans , Receptors, Notch/metabolism , Skin Neoplasms/pathology
16.
Cancer Res ; 77(12): 3151-3157, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28512245

ABSTRACT

Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR.


Subject(s)
Antigens, Viral, Tumor/metabolism , Carcinoma, Merkel Cell/virology , Polyomavirus Infections/virology , Skin Neoplasms/virology , Tumor Virus Infections/virology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Merkel Cell/metabolism , Disease Models, Animal , Humans , Immunohistochemistry , Merkel cell polyomavirus/immunology , Mice , Mice, Transgenic , Polymerase Chain Reaction , Polyomavirus Infections/metabolism , Skin Neoplasms/metabolism , Tumor Virus Infections/metabolism
17.
Cell Rep ; 19(4): 809-821, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28445731

ABSTRACT

During development and regeneration, matrix progenitors undergo terminal differentiation to form the concentric layers of the hair follicle. These differentiation events are thought to require signals from the mesenchymal dermal papilla (DP); however, it remains unclear how DP-progenitor cell interactions govern specific cell fate decisions. Here, we show that the hair follicle differentiated layers are specified asynchronously, with early matrix progenitors initiating differentiation before surrounding the DP. Furthermore, these early matrix cells can undergo terminal differentiation in the absence of Shh, BMP signaling, and DP maturation. Whereas early matrix progenitors form the hair follicle companion layer, later matrix populations progressively form the inner root sheath and hair shaft. Altogether, our findings characterize some of the earliest terminal differentiation events in the hair follicle and reveal that the matrix progenitor pool can be divided into early and late phases based on distinct temporal, molecular, and functional characteristics.


Subject(s)
Cell Differentiation/physiology , Hair Follicle/cytology , Mesenchymal Stem Cells/cytology , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Proteins/metabolism , Dermis/cytology , GATA3 Transcription Factor/metabolism , Hair Follicle/metabolism , Hedgehog Proteins/deficiency , Hedgehog Proteins/genetics , Keratin-6/metabolism , Keratins/genetics , Keratins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
18.
PLoS Genet ; 12(7): e1006150, 2016 07.
Article in English | MEDLINE | ID: mdl-27414798

ABSTRACT

The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.


Subject(s)
Ectodysplasins/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Merkel Cells/cytology , Wnt1 Protein/metabolism , Animals , Cell Lineage , DNA Repair , Female , Fibroblast Growth Factors/metabolism , Gene Deletion , Genotype , Hair Follicle/embryology , Hair Follicle/metabolism , Homeostasis , Ligands , Male , Mice , Microscopy, Fluorescence , Morphogenesis , Mutation , Neurons/metabolism , Signal Transduction , Skin/embryology , Skin/metabolism , Touch
19.
J Vis Exp ; (112)2016 06 26.
Article in English | MEDLINE | ID: mdl-27404892

ABSTRACT

Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation.


Subject(s)
Denervation , Skin Diseases , Animals , Mice , Skin , Touch
20.
Cell Cycle ; 14(21): 3408-17, 2015.
Article in English | MEDLINE | ID: mdl-26398918

ABSTRACT

Upon wounding, multiple stem cell populations in the hair follicle (HF) and interfollicular epidermis (IFE) converge at the site of injury. Although these cells can contribute permanently to the regenerating epithelium, it remains unclear whether these contributions vary among cells originating from diverse compartments in the skin. By comparing the fates of several keratinocyte lineages, we observed here an initial decrease in both HF- and IFE-derived cells within the transient acanthotic layers of the regenerating epithelium. At the same time, the relative abundance of early-arriving IFE-derived cells specifically in the wound basal layer declined as later-arriving HF-derived cells entered the site of injury. Although laggard bulge-derived cells were typically constrained at the regenerative periphery, these cells persisted in the wound basal layer. Finally, suppressing Notch enabled IFE-derived cells to out-compete HF-derived cells. Taken together, these findings indicate that IFE-, HF- and bulge-derived cells make distinct contributions to regeneration over time. Furthermore, we speculate that extrinsic, non-genetic factors such as spatial constraint, distance from the wound, and basal versus suprabasal position may largely determine whether a cell ultimately persists.


Subject(s)
Epidermis/pathology , Hair Follicle/pathology , Stem Cells/pathology , Wound Healing , Wounds, Penetrating/pathology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Disease Models, Animal , Epidermis/injuries , Epidermis/metabolism , Genes, Reporter , Genotype , Hair Follicle/injuries , Hair Follicle/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice, Transgenic , Phenotype , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Stem Cells/metabolism , Time Factors , Wounds, Penetrating/genetics , Wounds, Penetrating/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...