Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 220(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34741504

ABSTRACT

Neuropeptides are evolutionarily conserved modulators of many aspects of animal behavior and physiology, and expand the repertoire of processes that can be controlled by a limited number of neurons. Deciphering the neuropeptidergic codes that govern distinct processes requires systematic functional analyses of neuropeptides and their cognate receptors. Even in well-studied model organisms like Caenorhabditis elegans, however, such efforts have been precluded by a lack of mutant reagents. Here, we generated and screened 21 C. elegans neuropeptide G-protein coupled receptor mutants with no pre-existing reagents for the touch-evoked escape response, and implicated six receptors expressed in diverse neuron classes representing multiple circuit levels in this behavior. We further characterized the mutant with the most severe phenotype, frpr-14, which was defective in multiple behavioral paradigms. We leveraged this range of phenotypes to reveal that FRPR-14 modulation of different precommand interneuron classes, AVH and AIB, can drive distinct behavioral subsets, demonstrating cellular context-dependent roles for FRPR-14 signaling. We then show that Caenorhabditis briggsae CBR-FRPR-14 modulates an AVH-like interneuron pair to regulate the same behaviors as C. elegans but to a smaller extent. Our results also suggest that differences in touch-evoked escape circuit architecture between closely related species results from changes in neuropeptide receptor expression pattern, as opposed to ligand-receptor pairing. This study provides insights into the principles utilized by a compact, multiplexed nervous system to generate intraspecific behavioral complexity and interspecific variation.


Subject(s)
Caenorhabditis elegans , Animals
2.
MicroPubl Biol ; 20212021 Jan 14.
Article in English | MEDLINE | ID: mdl-33474529

ABSTRACT

Accumulating evidence demonstrates that mutations in ALDH1A3 (the aldehyde dehydrogenase 1 family, member A3) are associated with developmental defects. The ALDH1A3 enzyme catalyzes retinoic acid biosynthesis and is essential to patterning and neuronal differentiation in the development of embryonic nervous system. Several missense mutations in ALDH1A3 have been identified in family studies of autosomal recessive microphthalmia, autism spectrum disorder, and other neurological disorders. However, there has been no evidence from animal models that verify the functional consequence of missense mutations in ALDH1A3. Here, we introduced the equivalent of the ALDH1A3 C174Y variant into the Caenorhabditis elegans ortholog, alh-1, at the corresponding locus. Mutant animals with this missense mutation exhibited decreased fecundity by 50% compared to wild-type animals, indicating disrupted protein function. To our knowledge, this is the first ALDH1A3 C174Y missense model, which might be used to elucidate the effects of ALDH1A3 C174Y missense mutation in the retinoic acid signaling pathway during development.

3.
Proc Natl Acad Sci U S A ; 117(1): 656-667, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31754030

ABSTRACT

A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Cell Adhesion Molecules, Neuronal/genetics , Habituation, Psychophysiologic/genetics , Phenomics/methods , Animals , Animals, Genetically Modified , Autism Spectrum Disorder/physiopathology , Behavior Observation Techniques/methods , Behavior, Animal/physiology , Caenorhabditis elegans , DNA-Binding Proteins/genetics , Disease Models, Animal , Epistasis, Genetic , Humans , Immunoglobulins/genetics , Locomotion/genetics , Membrane Proteins/genetics , Mutation, Missense , Phenotype , Transcription Factors/genetics
4.
Hum Mol Genet ; 28(13): 2271-2281, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31220273

ABSTRACT

Autism spectrum disorder (ASD) involves thousands of alleles in over 850 genes, but the current functional inference tools are not sufficient to predict phenotypic changes. As a result, the causal relationship of most of these genetic variants in the pathogenesis of ASD has not yet been demonstrated and an experimental method prioritizing missense alleles for further intensive analysis is crucial. For this purpose, we have designed a pipeline that uses Caenorhabditis elegans as a genetic model to screen for phenotype-changing missense alleles inferred from human ASD studies. We identified highly conserved human ASD-associated missense variants in their C. elegans orthologs, used a CRISPR/Cas9-mediated homology-directed knock-in strategy to generate missense mutants and analyzed their impact on behaviors and development via several broad-spectrum assays. All tested missense alleles were predicted to perturb protein function, but we found only 70% of them showed detectable phenotypic changes in morphology, locomotion or fecundity. Our findings indicate that certain missense variants in the C. elegans orthologs of human CACNA1D, CHD7, CHD8, CUL3, DLG4, GLRA2, NAA15, PTEN, SYNGAP1 and TPH2 impact neurodevelopment and movement functions, elevating these genes as candidates for future study into ASD. Our approach will help prioritize functionally important missense variants for detailed studies in vertebrate models and human cells.


Subject(s)
Autism Spectrum Disorder/genetics , Caenorhabditis elegans/genetics , Alleles , Animals , CRISPR-Cas Systems , Disease Models, Animal , Fertility/genetics , Genetic Association Studies , Locomotion/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Phenotype
6.
Curr Pharm Des ; 20(32): 5139-50, 2014.
Article in English | MEDLINE | ID: mdl-24410559

ABSTRACT

Schizophrenia and other psychiatric disorders are generally diagnosed based on a collection of symptoms defined by a combination of an individual's feelings, perceptions, and behaviors. Many of these disorders are characterized by specific cognitive and social deficits. Although it is nearly impossible to recapitulate the full phenotypic spectrum of schizophrenia in mice, mouse models play an indispensable role in understanding the pathogenesis of this disorder and the development of new therapeutics. Genetic mouse models of schizophrenia and mouse behavioral tests provide a feasible approach for elucidating causal relationships between susceptibility gene(s) and schizophrenia-related symptoms. There has been a proliferation of studies characterizing basic behavioral phenotypes in mice. Since there is no way to completely model human psychiatric symptoms in mice, the major role of behavioral tests is to provide insights into underlying affected circuitry and pathophysiology. Given that the recovery of cognitive and social abilities significantly benefits functional outcomes, there has been an increasing interest in characterizing cognitive and social functions in mutant mice; however, these functions are not easy to measure. In this review, a selection of conventional behavioral tasks was briefly described and three specific behavioral tasks aimed at characterizing social communication, attentional function, and choice behavior in mice were highlighted. The choice of specific behavioral tasks during experimental planning should take into consideration a variety of factors, including their validity, reliability, sensitivity, utility, and specificity. Based upon the hypothetical hypofunction of N-methyl-D-aspartate receptor (NMDAR)-mediated signaling pathways in the involvement of cognitive and social impairments in schizophrenia, three NMDAR-related compounds/drugs, D-serine, sarcosine, and D-cycloserine, are discussed as an example.


Subject(s)
Cognition Disorders/therapy , Nootropic Agents/pharmacology , Schizophrenia/therapy , Animals , Behavior, Animal , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Disease Models, Animal , Humans , Mice , Nootropic Agents/administration & dosage , Nootropic Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Reproducibility of Results , Schizophrenia/physiopathology , Social Behavior
7.
Brain Struct Funct ; 219(4): 1417-31, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23689501

ABSTRACT

Disruption of disrupted-in-schizophrenia 1 (DISC1), a candidate susceptibility gene for schizophrenia, was first identified in a large Scottish family in which many members suffered from various psychiatric disorders, including schizophrenia. To model the Scottish DISC1 truncation, we established a Disc1 mutant mouse line in which the 129S6/SvEv 25-bp deletion variant was transferred into the C57BL/6J strain by backcrossing. A battery of behavioral tasks was conducted to evaluate the basic behaviors and cognitive function of these mice. In heterozygote and homozygote Disc1 mutant (Het and Homo) mice, behavioral impairments were noted in working memory test which is thought to be mediated by the function of the medial prefrontal cortex (mPFC). The properties of mPFC neurons were characterized in both morphological and physiological aspects. The dendritic diameters were decreased in layer II/III mPFC pyramidal neurons of Het and Homo mice, whereas a significant reduction in spine density was observed in Homo mice. Neuronal excitability was declined in layer II/III mPFC pyramidal neurons of Het and Homo mice, yet increased transmitter release was identified in Homo mice. Thus, the structural and functional alterations of the mPFC in Het and Homo mice might account for their cognitive impairment. Since most of the gene knockout mice are generated from 129 substrain-derived embryonic stem cells, potential Disc1 deficiency should be considered.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Maze Learning/physiology , Memory/physiology , Nerve Tissue Proteins/genetics , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Phenotype , Prefrontal Cortex/physiopathology , Recognition, Psychology/physiology , Schizophrenia/genetics , Schizophrenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...