Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Extracell Vesicles ; 10(10): e12132, 2021 08.
Article in English | MEDLINE | ID: mdl-34429859

ABSTRACT

Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pathological conditions, including the induction of pro-metastatic traits, but it is not yet known how and where functional cargoes of EVs are delivered to their targets in host cell compartments. We have described that after endocytosis, EVs reach Rab7+ late endosomes and a fraction of these enter the nucleoplasmic reticulum and transport EV biomaterials to the host cell nucleoplasm. Their entry therein and docking to outer nuclear membrane occur through a tripartite complex formed by the proteins VAP-A, ORP3 and Rab7 (VOR complex). Here, we report that the antifungal compound itraconazole (ICZ), but not its main metabolite hydroxy-ICZ or ketoconazole, disrupts the binding of Rab7 to ORP3-VAP-A complexes, leading to inhibition of EV-mediated pro-metastatic morphological changes including cell migration behaviour of colon cancer cells. With novel, smaller chemical drugs, inhibition of the VOR complex was maintained, although the ICZ moieties responsible for antifungal activity and interference with intracellular cholesterol distribution were removed. Knowing that cancer cells hijack their microenvironment and that EVs derived from them determine the pre-metastatic niche, small-sized inhibitors of nuclear transfer of EV cargo into host cells could find cancer therapeutic applications, particularly in combination with direct targeting of cancer cells.


Subject(s)
Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Fatty Acid-Binding Proteins/metabolism , Itraconazole/pharmacology , Nuclear Envelope/metabolism , Vesicular Transport Proteins/metabolism , rab7 GTP-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Antifungal Agents/pharmacology , Cell Line , Cell Movement/drug effects , Cholestenones/pharmacology , Endocytosis , Endosomes/metabolism , Fatty Acid-Binding Proteins/chemistry , Humans , Ketoconazole/pharmacology , Models, Molecular , Saponins/pharmacology , Vesicular Transport Proteins/chemistry , rab7 GTP-Binding Proteins/chemistry
3.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
4.
Nat Commun ; 9(1): 5379, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568188

ABSTRACT

Myeloid cells are recruited to damaged tissues where they can resolve infections and tumor growth or stimulate wound healing and tumor progression. Recruitment of these cells is regulated by integrins, a family of adhesion receptors that includes integrin CD11b. Here we report that, unexpectedly, integrin CD11b does not regulate myeloid cell recruitment to tumors but instead controls myeloid cell polarization and tumor growth. CD11b activation promotes pro-inflammatory macrophage polarization by stimulating expression of microRNA Let7a. In contrast, inhibition of CD11b prevents Let7a expression and induces cMyc expression, leading to immune suppressive macrophage polarization, vascular maturation, and accelerated tumor growth. Pharmacological activation of CD11b with a small molecule agonist, Leukadherin 1 (LA1), promotes pro-inflammatory macrophage polarization and suppresses tumor growth in animal models of murine and human cancer. These studies identify CD11b as negative regulator of immune suppression and a target for cancer immune therapy.


Subject(s)
Benzoates/therapeutic use , CD11b Antigen/metabolism , Macrophages/metabolism , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Thiohydantoins/therapeutic use , Animals , Benzoates/pharmacology , CD11b Antigen/agonists , Macrophages/drug effects , Melanoma, Experimental/drug therapy , Mice, Transgenic , Neovascularization, Pathologic , Proto-Oncogene Proteins c-myc/metabolism , Thiohydantoins/pharmacology
6.
Nature ; 539(7629): 437-442, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27642729

ABSTRACT

Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer. PI3Kγ signalling through Akt and mTor inhibits NFκB activation while stimulating C/EBPß activation, thereby inducing a transcriptional program that promotes immune suppression during inflammation and tumour growth. By contrast, selective inactivation of macrophage PI3Kγ stimulates and prolongs NFκB activation and inhibits C/EBPß activation, thus promoting an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity. PI3Kγ synergizes with checkpoint inhibitor therapy to promote tumour regression and increased survival in mouse models of cancer. In addition, PI3Kγ-directed, anti-inflammatory gene expression can predict survival probability in cancer patients. Our work thus demonstrates that therapeutic targeting of intracellular signalling pathways that regulate the switch between macrophage polarization states can control immune suppression in cancer and other disorders.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Immune Tolerance/immunology , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cells, Cultured , Class Ib Phosphatidylinositol 3-Kinase/deficiency , Class Ib Phosphatidylinositol 3-Kinase/genetics , Female , Humans , Inflammation/immunology , Lymphocyte Activation , Macrophages/enzymology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neoplasms/immunology , Neoplasms/pathology , Phosphoinositide-3 Kinase Inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/metabolism , Tumor Escape/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...