Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Clin Biomech (Bristol, Avon) ; 115: 106256, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38669917

ABSTRACT

BACKGROUND: Rupturing the anterior cruciate ligament is an orthopedic injury that results in neuromuscular impairments affecting sensory input to the central nervous system. Traditional physical therapy after anterior cruciate ligament reconstruction aims to rehabilitate orthopedic impairments but fails to address asymmetric gait mechanics that are present post-operatively and are linked to the development of post-traumatic osteoarthritis. A first step towards developing gait interventions is understanding if individuals after anterior cruciate ligament reconstruction have the capacity to learn new walking mechanics. METHODS: The split-belt treadmill offers a task-specific approach to examine neuromuscular adaptations in patients after injury. The potential for changing spatiotemporal gait mechanics via split-belt treadmill adaptation has not been tested early after anterior cruciate ligament reconstruction; nor has the ability to retain and transfer newly learned gait mechanics. Therefore, we used a split-belt treadmill paradigm to compare gait adaptation, retention, and transfer to overground walking between 15 individuals 3-9 months after anterior cruciate ligament reconstruction and 15 matched control individuals. FINDINGS: Results suggested individuals after anterior cruciate ligament reconstruction were able to adapt and retain step length symmetry changes as well as controls. There was also evidence of partial transfer to overground walking, similar to controls. INTERPRETATION: Despite disruption in afferent feedback from the joint, individuals early after anterior cruciate ligament reconstruction can learn a new gait pattern using sensorimotor adaptation, retain, and partially transfer the learned gait pattern. This may be a critical time to intervene with gait-specific interventions targeting post-operative gait asymmetries.

2.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38584387

ABSTRACT

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.


Subject(s)
Chromosomes , Genome , Animals , Chromosomes/genetics , Gastropoda/genetics , Chromosome Inversion , Ecotype
3.
Sci Adv ; 10(17): eadl5255, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657058

ABSTRACT

Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.


Subject(s)
Polymorphism, Genetic , Animals , Female , Male , Birds/genetics , Phenotype , Biological Evolution , Pigmentation/genetics , Sex Characteristics , Evolution, Molecular
4.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38438263

ABSTRACT

When learning a new motor skill, people often must use trial and error to discover which movement is best. In the reinforcement learning framework, this concept is known as exploration and has been linked to increased movement variability in motor tasks. For locomotor tasks, however, increased variability decreases upright stability. As such, exploration during gait may jeopardize balance and safety, making reinforcement learning less effective. Therefore, we set out to determine if humans could acquire and retain a novel locomotor pattern using reinforcement learning alone. Young healthy male and female participants walked on a treadmill and were provided with binary reward feedback (indicated by a green checkmark on the screen) that was tied to a fixed monetary bonus, to learn a novel stepping pattern. We also recruited a comparison group who walked with the same novel stepping pattern but did so by correcting for target error, induced by providing real-time veridical visual feedback of steps and a target. In two experiments, we compared learning, motor variability, and two forms of motor memories between the groups. We found that individuals in the binary reward group did, in fact, acquire the new walking pattern by exploring (increasing motor variability). Additionally, while reinforcement learning did not increase implicit motor memories, it resulted in more accurate explicit motor memories compared with the target error group. Overall, these results demonstrate that humans can acquire new walking patterns with reinforcement learning and retain much of the learning over 24 h.


Subject(s)
Learning , Reinforcement, Psychology , Humans , Male , Female , Reward , Walking , Memory
5.
Nanomaterials (Basel) ; 14(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38334525

ABSTRACT

The atomic force microscope is a versatile tool for assessing the topography, friction, and roughness of a broad spectrum of surfaces, encompassing anti-bacterial nanostructure arrays. Measuring and comparing all these values with one instrument allows clear comparisons of many nanomechanical reactions and anomalies. Increasing nano-Newton-level forces through the cantilever tip allows for the testing and measuring of failure points, damage behavior, and functionality under unfavorable conditions. Subjecting a grade 5 titanium alloy to hydrothermally etched nanostructures while applying elevated cantilever tip forces resulted in the observation of irreversible damage through atomic force microscopy. Despite the damage, a rough and non-uniform morphology remained that may still allow it to perform in its intended application as an anti-bacterial implant surface. Utilizing an atomic force microscope enables the evaluation of these surfaces before their biomedical application.

6.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38376487

ABSTRACT

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Subject(s)
Balaenoptera , Neoplasms , Animals , Balaenoptera/genetics , Segmental Duplications, Genomic , Genome , Demography , Neoplasms/genetics
7.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38370851

ABSTRACT

Motor learning involves both explicit and implicit processes that are fundamental for acquiring and adapting complex motor skills. However, stroke may damage the neural substrates underlying explicit and/or implicit learning, leading to deficits in overall motor performance. While both learning processes are typically used in concert in daily life and rehabilitation, no gait studies have determined how these processes function together after stroke when tested during a task that elicits dissociable contributions from both. Here, we compared explicit and implicit locomotor learning in individuals with chronic stroke to age- and sex-matched neurologically intact controls. We assessed implicit learning using split-belt adaptation (where two treadmill belts move at different speeds). We assessed explicit learning (i.e., strategy-use) using visual feedback during split-belt walking to help individuals explicitly correct for step length errors created by the split-belts. The removal of visual feedback after the first 40 strides of split-belt walking, combined with task instructions, minimized contributions from explicit learning for the remainder of the task. We utilized computational modeling to determine the individual contributions of explicit and implicit processes to overall behavioral change. The computational and behavioral analyses revealed that, compared to controls, individuals with chronic stroke demonstrated deficits in both explicit and implicit contributions to locomotor learning, a result that runs counter to prior work testing each process individually during gait. Since post-stroke locomotor rehabilitation involves interventions that rely on both explicit and implicit motor learning, future work should determine how locomotor rehabilitation interventions can be structured to optimize overall motor learning.

8.
Sci Data ; 11(1): 176, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326333

ABSTRACT

Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.


Subject(s)
Chromosomes , Shrews , Animals , Mice , Chromosomes/genetics , Genome , Genomics , Molecular Sequence Annotation , Shrews/genetics
9.
PLoS Genet ; 20(1): e1011116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227589

ABSTRACT

Heteromorphic sex chromosomes are usually thought to have originated from a pair of autosomes that acquired a sex-determining locus and subsequently stopped recombining, leading to degeneration of the sex-limited chromosome. The majority of nematode species lack heteromorphic sex chromosomes and determine sex using an X-chromosome counting mechanism, with males being hemizygous for one or more X chromosomes (XX/X0). Some filarial nematode species, including important parasites of humans, have heteromorphic XX/XY karyotypes. It has been assumed that sex is determined by a Y-linked locus in these species. However, karyotypic analyses suggested that filarial Y chromosomes are derived from the unfused homologue of an autosome involved in an X-autosome fusion event. Here, we generated a chromosome-level reference genome for Litomosoides sigmodontis, a filarial nematode with the ancestral filarial karyotype and sex determination mechanism (XX/X0). By mapping the assembled chromosomes to the rhabditid nematode ancestral linkage (or Nigon) elements, we infer that the ancestral filarial X chromosome was the product of a fusion between NigonX (the ancestrally X-linked element) and NigonD (ancestrally autosomal). In the two filarial lineages with XY systems, there have been two independent X-autosome chromosome fusion events involving different autosomal Nigon elements. In both lineages, the region shared by the neo-X and neo-Y chromosomes is within the ancestrally autosomal portion of the X, confirming that the filarial Y chromosomes are derived from the unfused homologue of the autosome. Sex determination in XY filarial nematodes therefore likely continues to operate via the ancestral X-chromosome counting mechanism, rather than via a Y-linked sex-determining locus.


Subject(s)
Filarioidea , Nematoda , Animals , Male , Humans , Y Chromosome/genetics , Sex Chromosomes , X Chromosome/genetics , Chromosomes, Human, X , Filarioidea/genetics
10.
Acta Biomater ; 175: 369-381, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141932

ABSTRACT

The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/physiology , Vancomycin/pharmacology , Cefazolin/metabolism , Titanium/pharmacology , Staphylococcal Infections/prevention & control , Biofilms , Microbial Sensitivity Tests
11.
Wellcome Open Res ; 8: 507, 2023.
Article in English | MEDLINE | ID: mdl-38046191

ABSTRACT

We present a genome assembly from an individual male Anopheles moucheti (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), from a wild population in Cameroon. The genome sequence is 271 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.5 kilobases in length.

12.
Sci Data ; 10(1): 880, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066002

ABSTRACT

Chub mackerels (Scomber japonicus) are a migratory marine fish widely distributed in the Indo-Pacific Ocean. They are globally consumed for their high Omega-3 content, but their population is declining due to global warming. Here, we generated the first chromosome-level genome assembly of chub mackerel (fScoJap1) using the Vertebrate Genomes Project assembly pipeline with PacBio HiFi genomic sequencing and Arima Hi-C chromosome contact data. The final assembly is 828.68 Mb with 24 chromosomes, nearly all containing telomeric repeats at their ends. We annotated 31,656 genes and discovered that approximately 2.19% of the genome contained DNA transposon elements repressed within duplicated genes. Analyzing 5-methylcytosine (5mC) modifications using HiFi reads, we observed open/close chromatin patterns at gene promoters, including the FADS2 gene involved in Omega-3 production. This chromosome-level reference genome provides unprecedented opportunities for advancing our knowledge of chub mackerels in biology, industry, and conservation.


Subject(s)
Cyprinidae , Genome , Perciformes , Animals , Chromosomes , Cyprinidae/genetics , Pacific Ocean , Perciformes/genetics
13.
NPJ Biofilms Microbiomes ; 9(1): 90, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030708

ABSTRACT

Bacterial colonization of implantable biomaterials is an ever-pervasive threat that causes devastating infections, yet continues to elude resolution. In the present study, we report how a rationally designed antibacterial surface containing sharp nanospikes can enhance the susceptibility of pathogenic bacteria to antibiotics used in prophylactic procedures. We show that Staphylococcus aureus, once adhered to a titanium surface, changes its cell-surface charge to increase its tolerance to vancomycin. However, if the Ti surface is modified to bear sharp nanospikes, the activity of vancomycin is rejuvenated, leading to increased bacterial cell death through synergistic activity. Analysis of differential gene expression provided evidence of a set of genes involved with the modification of cell surface charge. Synchrotron-sourced attenuated Fourier-transform infrared microspectroscopy (ATR-FTIR), together with multivariate analysis, was utilized to further elucidate the biochemical changes of S. aureus adhered to nanospikes. By inhibiting the ability of the pathogen to reduce its net negative charge, the nanoengineered surface renders S. aureus more susceptible to positively charged antimicrobials such as vancomycin. This finding highlights the opportunity to enhance the potency of prophylactic antibiotic treatments during implant placement surgery by employing devices having surfaces modified with spike-like nanostructures.


Subject(s)
Staphylococcal Infections , Vancomycin , Humans , Vancomycin/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Prostheses and Implants
14.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834264

ABSTRACT

The European mink Mustela lutreola (Mustelidae) ranks among the most endangered mammalian species globally, experiencing a rapid and severe decline in population size, density, and distribution. Given the critical need for effective conservation strategies, understanding its genomic characteristics becomes paramount. To address this challenge, the platinum-quality, chromosome-level reference genome assembly for the European mink was successfully generated under the project of the European Mink Centre consortium. Leveraging PacBio HiFi long reads, we obtained a 2586.3 Mbp genome comprising 25 scaffolds, with an N50 length of 154.1 Mbp. Through Hi-C data, we clustered and ordered the majority of the assembly (>99.9%) into 20 chromosomal pseudomolecules, including heterosomes, ranging from 6.8 to 290.1 Mbp. The newly sequenced genome displays a GC base content of 41.9%. Additionally, we successfully assembled the complete mitochondrial genome, spanning 16.6 kbp in length. The assembly achieved a BUSCO (Benchmarking Universal Single-Copy Orthologs) completeness score of 98.2%. This high-quality reference genome serves as a valuable genomic resource for future population genomics studies concerning the European mink and related taxa. Furthermore, the newly assembled genome holds significant potential in addressing key conservation challenges faced by M. lutreola. Its applications encompass potential revision of management units, assessment of captive breeding impacts, resolution of phylogeographic questions, and facilitation of monitoring and evaluating the efficiency and effectiveness of dedicated conservation strategies for the European mink. This species serves as an example that highlights the paramount importance of prioritizing endangered species in genome sequencing projects due to the race against time, which necessitates the comprehensive exploration and characterization of their genomic resources before their populations face extinction.


Subject(s)
Endangered Species , Mink , Animals , Mink/genetics , Platinum , Conservation of Natural Resources , Genomics
15.
iScience ; 26(10): 107811, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37744038

ABSTRACT

Typically much smaller in number than their mainland counterparts, island populations are ideal systems to investigate genetic threats to small populations. The Svalbard reindeer (Rangifer tarandus platyrhynchus) is an endemic subspecies that colonized the Svalbard archipelago ca. 6,000-8,000 years ago and now shows numerous physiological and morphological adaptations to its arctic habitat. Here, we report a de-novo chromosome-level assembly for Svalbard reindeer and analyze 133 reindeer genomes spanning Svalbard and most of the species' Holarctic range, to examine the genomic consequences of long-term isolation and small population size in this insular subspecies. Empirical data, demographic reconstructions, and forward simulations show that long-term isolation and high inbreeding levels may have facilitated the reduction of highly deleterious-and to a lesser extent, moderately deleterious-variation. Our study indicates that long-term reduced genetic diversity did not preclude local adaptation to the High Arctic, suggesting that even severely bottlenecked populations can retain evolutionary potential.

16.
Genome Biol Evol ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37590950

ABSTRACT

Amidst the current biodiversity crisis, the availability of genomic resources for declining species can provide important insights into the factors driving population decline. In the early 1990s, the black-legged kittiwake (Rissa tridactyla), a pelagic gull widely distributed across the arctic, subarctic, and temperate zones, suffered a steep population decline following an abrupt warming of sea surface temperature across its distribution range and is currently listed as Vulnerable by the International Union for the Conservation of Nature. Kittiwakes have long been the focus for field studies of physiology, ecology, and ecotoxicology and are primary indicators of fluctuating ecological conditions in arctic and subarctic marine ecosystems. We present a high-quality chromosome-level reference genome and annotation for the black-legged kittiwake using a combination of Pacific Biosciences HiFi sequencing, Bionano optical maps, Hi-C reads, and RNA-Seq data. The final assembly spans 1.35 Gb across 32 chromosomes, with a scaffold N50 of 88.21 Mb and a BUSCO completeness of 97.4%. This genome assembly substantially improves the quality of a previous draft genome, showing an approximately 5× increase in contiguity and a more complete annotation. Using this new chromosome-level reference genome and three more chromosome-level assemblies of Charadriiformes, we uncover several lineage-specific chromosome fusions and fissions, but find no shared rearrangements, suggesting that interchromosomal rearrangements have been commonplace throughout the diversification of Charadriiformes. This new high-quality genome assembly will enable population genomic, transcriptomic, and phenotype-genotype association studies in a widely studied sentinel species, which may provide important insights into the impacts of global change on marine systems.


Subject(s)
Charadriiformes , Animals , Charadriiformes/genetics , Ecosystem , Gene Rearrangement , Genomics , Chromosomes/genetics
17.
Wellcome Open Res ; 8: 74, 2023.
Article in English | MEDLINE | ID: mdl-37424773

ABSTRACT

We present a genome assembly from an individual female Anopheles gambiae (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), Ifakara strain. The genome sequence is 264 megabases in span. Most of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length.

19.
Heliyon ; 9(7): e17759, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449129

ABSTRACT

Secondary incidents are considered a major risk in terms of traffic management due to dangerous ramifications, such as reduced capacity, additional traffic delays, and serious injuries. Therefore, it is necessary to examine what causes a secondary incident to occur after a primary incident and prepare countermeasures to reduce the possible damage to human and property from primary and secondary incidents. In Iowa, a safety service patrol program is being implemented on major highway routes to respond to both types of incident efficiently. However, research on when, where, and under what conditions these incidents occur and how the program can deal with incidents must be conducted to determine the major characteristics of primary and secondary incidents and to estimate the program's performance. Consequently, statistical and spatial analyzes were performed on traffic incidents in a 5-year period (2016-2020) in Iowa. A survival analysis confirmed that the program could decrease the probability of secondary incident occurrences, and 99.9% of secondary incidents occurred within 4 h of the primary incident. Additionally, the binary logistic regression analysis of primary incidents affirmed that a longer incident clearance time and a higher severity of incidents could increase the probability of secondary incidents occurrence. Furthermore, a spatial analysis evaluated that the Iowa DOT safety service patrol program adequately covered areas where primary and secondary incidents are focused. This study is expected to be used to develop countermeasures in both incident cases by identifying the characteristics of secondary and primary incidents in Iowa.

20.
Nat Commun ; 14(1): 3412, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296119

ABSTRACT

Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.


Subject(s)
Fishes , Perciformes , Animals , Fishes/genetics , Genomics , Vertebrates , Phylogeny , Hemoglobins/genetics , Antarctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...