Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(2): 2654-2661, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33406366

ABSTRACT

This work enables highly "uniform" and "reversible" deposition of Li metal in carbonate electrolytes through a one-time rapid oxidation and reduction (ROAR) treatment. Over the years, Li metal has been plagued with irreversible dendritic growths that create isolated and unusable structures called "dead Li". Accumulation of dead Li negatively impacts the ion transport, performance, and safety of Li metal batteries. To address this long-standing problem, we have developed an in situ process to uniformly create reversible Li deposits. Our results demonstrate that a combination of high-voltage pulses, which rapidly oxidize and reduce Li in both directions (ROAR treatment), leads to strikingly more homogeneous morphology and eliminates reaction pathway transitions. We validate that ROAR treatments eliminate traditional "mossy dendrites" under extended cycling (<250 cycles) in standard carbonate-based electrolytes. Moreover, ROAR treatments create a 500% reduction in overpotential for electrodissolution/deposition and eliminate "peaking" voltage behavior.

2.
ACS Appl Mater Interfaces ; 11(50): 46993-47002, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31738043

ABSTRACT

Because of the complexity, high reactivity, and continuous evolution of the silicon-electrolyte interphase (SiEI), "individual" constituents of the SiEI were investigated to understand their physical, electrochemical, and mechanical properties. For the analysis of these intrinsic properties, known SiEI components (i.e., SiO2, Li2Si2O5, Li2SiO3, Li3SiOx, Li2O, and LiF) were selected and prepared as amorphous thin films. The chemical composition, purity, morphology, roughness, and thickness of prepared samples were characterized using a variety of analytical techniques. On the basis of subsequent analysis, LiF shows the lowest ionic conductivity and relatively weak, brittle mechanical properties, while lithium silicates demonstrate higher ionic conductivities and greater mechanical hardness. This research establishes a framework for identifying components critical for stabilization of the SiEI, thus enabling rational design of new electrolyte additives and functional binders for the development of next-generation advanced Li-ion batteries utilizing Si anodes.

3.
Nat Commun ; 9(1): 2490, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29950672

ABSTRACT

Solid-state electrolytes such as Li2S-P2S5 compounds are promising materials that could enable Li metal anodes. However, many solid-state electrolytes are unstable against metallic lithium, and little is known about the chemical evolution of these interfaces during cycling, hindering the rational design of these materials. In this work, operando X-ray photoelectron spectroscopy and real-time in situ Auger electron spectroscopy mapping are developed to probe the formation and evolution of the Li/Li2S-P2S5 solid-electrolyte interphase during electrochemical cycling, and to measure individual overpotentials associated with specific interphase constituents. Results for the Li/Li2S-P2S5 system reveal that electrochemically driving Li+ to the surface leads to phase decomposition into Li2S and Li3P. Additionally, oxygen contamination within the Li2S-P2S5 leads initially to Li3PO4 phase segregation, and subsequently to Li2O formation. The spatially non-uniform distribution of these phases, coupled with differences in their ionic conductivities, have important implications for the overall properties and performance of the solid-electrolyte interphase.

4.
ACS Cent Sci ; 2(11): 790-801, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27924307

ABSTRACT

Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. However the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. A mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. This work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. The results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.

5.
ACS Appl Mater Interfaces ; 4(12): 6728-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23194033

ABSTRACT

Modification of physiochemical and structural properties of carbon-based materials through targeted functionalization is a useful way to improve the properties and performance of such catalyst materials. This work explores the incorporation of dopants, including nitrogen, iodine, and fluorine, into the carbon structure of highly-oriented pyrolytic graphite (HOPG) and its potential benefits on the stability of PtRu catalyst nanoparticles. Evaluation of the changes in the catalyst nanoparticle coverage and size as a function of implantation parameters reveals that carbon supports functionalized with a combination of nitrogen and fluorine provide the most beneficial interactions, resulting in suppressed particle coarsening and dissolution. Benefits of a carefully tuned support system modified with fluorine and nitrogen surpass those obtained with nitrogen (no fluorine) modification. Ion implantation of iodine into HOPG results in a consistent amount of structural damage to the carbon matrix, regardless of dose. For this modification, improvements in stability are similar to nitrogen modification; however, the benefit is only observed at higher dose conditions. This indicates that a mechanism different than the one associated with nitrogen may be responsible for the improved durability.

SELECTION OF CITATIONS
SEARCH DETAIL
...