Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
J Phys Chem B ; 128(15): 3585-3597, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38593280

ABSTRACT

Super-resolution and single-molecule microscopies have been increasingly applied to complex biological systems. A major challenge of these approaches is that fluorescent puncta must be detected in the low signal, high noise, heterogeneous background environments of cells and tissue. We present RASP, Radiality Analysis of Single Puncta, a bioimaging-segmentation method that solves this problem. RASP removes false-positive puncta that other analysis methods detect and detects features over a broad range of spatial scales: from single proteins to complex cell phenotypes. RASP outperforms the state-of-the-art methods in precision and speed using image gradients to separate Gaussian-shaped objects from the background. We demonstrate RASP's power by showing that it can extract spatial correlations between microglia, neurons, and α-synuclein oligomers in the human brain. This sensitive, computationally efficient approach enables fluorescent puncta and cellular features to be distinguished in cellular and tissue environments, with sensitivity down to the level of the single protein. Python and MATLAB codes, enabling users to perform this RASP analysis on their own data, are provided as Supporting Information and links to third-party repositories.


Subject(s)
Brain , Humans
2.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480682

ABSTRACT

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Subject(s)
Brain Diseases , Humans , Acetylation , Brain/diagnostic imaging , Brain/metabolism , Brain Diseases/genetics , Inheritance Patterns , Mutation , Phosphates/metabolism , Sodium-Phosphate Cotransporter Proteins, Type III/metabolism
4.
Aging Cell ; 22(7): e13861, 2023 07.
Article in English | MEDLINE | ID: mdl-37129365

ABSTRACT

Age is a major risk factor for neurodegenerative diseases. Shortening of leucocyte telomeres with advancing age, arguably a measure of "biological" age, is a known phenomenon and epidemiologically correlated with age-related disease. The main mechanism of telomere shortening is cell division, rendering telomere length in post-mitotic cells presumably stable. Longitudinal measurement of human brain telomere length is not feasible, and cross-sectional cortical brain samples so far indicated no attrition with age. Hence, age-related changes in telomere length in the brain and the association between telomere length and neurodegenerative diseases remain unknown. Here, we demonstrate that mean telomere length in the putamen, a part of the basal ganglia, physiologically shortens with age, like leukocyte telomeres. This was achieved by using matched brain and leukocyte-rich spleen samples from 98 post-mortem healthy human donors. Using spleen telomeres as a reference, we further found that mean telomere length was brain region-specific, as telomeres in the putamen were significantly shorter than in the cerebellum. Expression analyses of genes involved in telomere length regulation and oxidative phosphorylation revealed that both region- and age-dependent expression pattern corresponded with region-dependent telomere length dynamics. Collectively, our results indicate that mean telomere length in the human putamen physiologically shortens with advancing age and that both local and temporal gene expression dynamics correlate with this, pointing at a potential mechanism for the selective, age-related vulnerability of the nigro-striatal network.


Subject(s)
Putamen , Telomere Shortening , Humans , Cross-Sectional Studies , Risk Factors , Telomere/genetics
5.
Brain ; 145(12): 4349-4367, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36074904

ABSTRACT

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.


Subject(s)
Mitophagy , Parkinson Disease , Humans , Genome-Wide Association Study , Mitophagy/physiology , Neurodegenerative Diseases , Parkinson Disease/metabolism , Protein Kinases/genetics , tau Proteins/genetics
6.
Genet Med ; 24(10): 2079-2090, 2022 10.
Article in English | MEDLINE | ID: mdl-35986737

ABSTRACT

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Subject(s)
Cerebellar Ataxia , Optic Atrophy , Spastic Paraplegia, Hereditary , Spinocerebellar Ataxias , Ubiquitin Thiolesterase , Ataxia/genetics , Cerebellar Ataxia/genetics , Humans , Loss of Function Mutation , Muscle Spasticity/genetics , Mutation , Optic Atrophy/genetics , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Ubiquitin Thiolesterase/genetics
7.
Mult Scler ; 28(11): 1673-1684, 2022 10.
Article in English | MEDLINE | ID: mdl-35575213

ABSTRACT

OBJECTIVE: The objective of this study was to explore the potential causal associations of body mass index, height, weight, fat mass, fat percentage and non-fat mass in the whole body, arms, legs and trunk (henceforth, 'anthropometric measures') with multiple sclerosis (MS) risk and severity. We also investigated the potential for reverse causation between anthropometric measures and MS risk. METHODS: We conducted a two-sample univariable, multivariable and bidirectional Mendelian randomisation (MR) analysis. RESULTS: A range of features linked to obesity (body mass index, weight, fat mass and fat percentage) were risk factors for MS development and worsened the disease's severity in MS patients. Interestingly, we were able to demonstrate that height and non-fat mass have no association with MS risk or MS severity. We demonstrated that the association between anthropometric measures and MS is not subject to bias from reverse causation. CONCLUSIONS: Our findings provide evidence from human genetics that a range of features linked to obesity is an important contributor to MS development and MS severity, but height and non-fat mass are not. Importantly, these findings also identify a potentially modifiable factor that may reduce the accumulation of further disability and ameliorate MS severity.


Subject(s)
Multiple Sclerosis , Adipose Tissue , Body Mass Index , Humans , Mendelian Randomization Analysis , Multiple Sclerosis/complications , Multiple Sclerosis/epidemiology , Multiple Sclerosis/genetics , Obesity/epidemiology , Obesity/genetics , Polymorphism, Single Nucleotide
8.
Mov Disord ; 37(1): 148-161, 2022 01.
Article in English | MEDLINE | ID: mdl-34622992

ABSTRACT

BACKGROUND: Complex parkinsonism is the commonest phenotype in late-onset PLA2G6-associated neurodegeneration. OBJECTIVES: The aim of this study was to deeply characterize phenogenotypically PLA2G6-related parkinsonism in the largest cohort ever reported. METHODS: We report 14 new cases of PLA2G6-related parkinsonism and perform a systematic literature review. RESULTS: PLA2G6-related parkinsonism shows a fairly distinct phenotype based on 86 cases from 68 pedigrees. Young onset (median age, 23.0 years) with parkinsonism/dystonia, gait/balance, and/or psychiatric/cognitive symptoms were common presenting features. Dystonia occurred in 69.4%, pyramidal signs in 77.2%, myoclonus in 65.2%, and cerebellar signs in 44.6% of cases. Early bladder overactivity was present in 71.9% of cases. Cognitive impairment affected 76.1% of cases and psychiatric features 87.1%, the latter being an isolated presenting feature in 20.1%. Parkinsonism was levodopa responsive but complicated by early, often severe dyskinesias. Five patients benefited from deep brain stimulation. Brain magnetic resonance imaging findings included cerebral (49.3%) and/or cerebellar (43.2%) atrophy, but mineralization was evident in only 28.1%. Presynaptic dopaminergic terminal imaging was abnormal in all where performed. Fifty-four PLA2G6 mutations have hitherto been associated with parkinsonism, including four new variants reported in this article. These are mainly nontruncating, which may explain the phenotypic heterogeneity of childhood- and late-onset PLA2G6-associated neurodegeneration. In five deceased patients, median disease duration was 13.0 years. Brain pathology in three cases showed mixed Lewy and tau pathology. CONCLUSIONS: Biallelic PLA2G6 mutations cause early-onset parkinsonism associated with dystonia, pyramidal and cerebellar signs, myoclonus, and cognitive impairment. Early psychiatric manifestations and bladder overactivity are common. Cerebro/cerebellar atrophy are frequent magnetic resonance imaging features, whereas brain iron deposition is not. Early, severe dyskinesias are a tell-tale sign. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Parkinsonian Disorders , Age of Onset , Atrophy , Dystonia/genetics , Genotype , Group VI Phospholipases A2/genetics , Humans , Mutation , Parkinsonian Disorders/genetics , Parkinsonian Disorders/pathology , Pedigree , Phenotype
9.
Nat Commun ; 12(1): 7342, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930919

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson's disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson's disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson's disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson's disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson's disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson's disease drug development.


Subject(s)
Genome, Human , Mendelian Randomization Analysis , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Brain/metabolism , Brain/pathology , Case-Control Studies , Cohort Studies , Disease Progression , Gene Expression Regulation , Genetic Predisposition to Disease , Genetic Variation , Humans , Parkinson Disease/blood , Quantitative Trait Loci/genetics , Risk Factors
11.
Ann Neurol ; 90(2): 193-202, 2021 08.
Article in English | MEDLINE | ID: mdl-34184781

ABSTRACT

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Subject(s)
Cluster Headache/epidemiology , Cluster Headache/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Case-Control Studies , Cluster Headache/diagnosis , Cohort Studies , Female , Humans , Male , Sweden/epidemiology , United Kingdom/epidemiology
13.
Mov Disord ; 36(9): 2182-2187, 2021 09.
Article in English | MEDLINE | ID: mdl-34056740

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative movement disorder. Observational studies suggest higher levels of plasma urate may protect against Parkinson's risk and progression; however, causality cannot be established. OBJECTIVES: This study set out to determine whether there is a true causal association between urate levels and PD age at onset (AAO) and progression severity using recently released PD AAO and progression genome-wide association study (GWAS) data. METHODS: A large two-sample Mendelian randomization design was employed, using genetic variants underlying urate levels and the latest GWAS data for PD outcomes. RESULTS: This study found no causal association between urate levels and Parkinson's risk, AAO, or progression severity. CONCLUSIONS: Our results predict increasing urate levels as a therapeutic strategy is unlikely to benefit PD patients. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Disease Progression , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Parkinson Disease/genetics , Uric Acid
14.
Alzheimers Dement (Amst) ; 13(1): e12186, 2021.
Article in English | MEDLINE | ID: mdl-33969176

ABSTRACT

INTRODUCTION: We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS: We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS: We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aßn) interactions during proteolysis, enhancing the production of longer Aß peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION: We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.

15.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33539324

ABSTRACT

Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Alleles , Calcium Signaling , Dendrites/metabolism , Dystonic Disorders , Mutation, Missense , Purkinje Cells/metabolism , Synaptic Transmission , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Animals , Dendrites/genetics , Dystonic Disorders/genetics , Dystonic Disorders/metabolism , Female , Humans , Male , Mice , Mice, Knockout
16.
JAMA Neurol ; 78(4): 464-472, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33523105

ABSTRACT

Importance: Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. Objective: To investigate what genes and genomic processes underlie the risk of sporadic PD. Design and Setting: This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. Main Outcomes and Measures: It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. Results: Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. Conclusions and Relevance: Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies.


Subject(s)
Databases, Genetic , Epigenesis, Genetic/genetics , Genetic Association Studies/methods , Genome-Wide Association Study/methods , Parkinson Disease/genetics , Parkinson Disease/metabolism , Databases, Genetic/statistics & numerical data , Gene Expression , Humans , Parkinson Disease/diagnosis
17.
Mov Disord ; 36(2): 424-433, 2021 02.
Article in English | MEDLINE | ID: mdl-33111402

ABSTRACT

BACKGROUND: There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS: We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS: There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS: We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Biomarkers , Cognition , Disease Progression , Genome-Wide Association Study , Humans , Parkinson Disease/genetics
18.
Mov Disord ; 36(1): 251-255, 2021 01.
Article in English | MEDLINE | ID: mdl-33026126

ABSTRACT

BACKGROUND: The objective of this study was to determine the prevalence of the GGC-repeat expansion in NOTCH2NLC in whites presenting with movement disorders. METHODS: We searched for the GGC-repeat expansion in NOTCH2NLC using repeat-primed polymerase chain reaction in 203 patients with essential tremor, 825 patients with PD, 194 patients with spinocerebellar ataxia, 207 patients with "possible" or "probable" MSA, and 336 patients with pathologically confirmed MSA. We also screened 30,008 patients enrolled in the 100,000 Genomes Project for the same mutation using ExpansionHunter, followed by repeat-primed polymerase chain reaction. All possible expansions were confirmed by Southern blotting and/or long-read sequencing. RESULTS: We identified 1 patient who carried the NOTCH2NLC mutation in the essential tremor cohort, and 1 patient presenting with recurrent encephalopathy and postural tremor/parkinsonism in the 100,000 Genomes Project. CONCLUSIONS: GGC-repeat expansion in NOTCH2NLC is rare in whites presenting with movement disorders. In addition, existing whole-genome sequencing data are useful in case ascertainment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Essential Tremor , Intranuclear Inclusion Bodies , Cohort Studies , Essential Tremor/epidemiology , Essential Tremor/genetics , Humans , Prevalence , Trinucleotide Repeat Expansion
SELECTION OF CITATIONS
SEARCH DETAIL
...