Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Front Hum Neurosci ; 17: 1215291, 2023.
Article in English | MEDLINE | ID: mdl-38021223

ABSTRACT

Introduction: Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods: Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results: These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion: This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.

2.
PLoS Genet ; 18(11): e1010506, 2022 11.
Article in English | MEDLINE | ID: mdl-36441670

ABSTRACT

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.


Subject(s)
Shelterin Complex , Telomere , Animals , Humans , Mice , Longevity , Phenotype , Telomere/genetics , Telomere Shortening
3.
Sci Adv ; 8(6): eabj4437, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35138895

ABSTRACT

Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.

4.
Plant Direct ; 5(10): e355, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34712896

ABSTRACT

Compared to controlled laboratory conditions, plant growth in the field is rarely optimal since it is frequently challenged by large fluctuations in light and temperature which lower the efficiency of photosynthesis and lead to photo-oxidative stress. Plants grown under natural conditions therefore place an increased onus on the regulatory mechanisms that protect and repair the delicate photosynthetic machinery. Yet, the exact changes in thylakoid proteome composition which allow plants to acclimate to the natural environment remain largely unexplored. Here, we use quantitative label-free proteomics to demonstrate that field-grown Arabidopsis plants incorporate aspects of both the low and high light acclimation strategies previously observed in laboratory-grown plants. Field plants showed increases in the relative abundance of ATP synthase, cytochrome b 6 f, ferredoxin-NADP+ reductases (FNR1 and FNR2) and their membrane tethers TIC62 and TROL, thylakoid architecture proteins CURT1A, CURT1B, RIQ1, and RIQ2, the minor monomeric antenna complex CP29.3, rapidly-relaxing non-photochemical quenching (qE)-related proteins PSBS and VDE, the photosystem II (PSII) repair machinery and the cyclic electron transfer complexes NDH, PGRL1B, and PGR5, in addition to decreases in the amounts of LHCII trimers composed of LHCB1.1, LHCB1.2, LHCB1.4, and LHCB2 proteins and CP29.2, all features typical of a laboratory high light acclimation response. Conversely, field plants also showed increases in the abundance of light harvesting proteins LHCB1.3 and CP29.1, zeaxanthin epoxidase (ZEP) and the slowly-relaxing non-photochemical quenching (qI)-related protein LCNP, changes previously associated with a laboratory low light acclimation response. Field plants also showed distinct changes to the proteome including the appearance of stress-related proteins ELIP1 and ELIP2 and changes to proteins that are largely invariant under laboratory conditions such as state transition related proteins STN7 and TAP38. We discuss the significance of these alterations in the thylakoid proteome considering the unique set of challenges faced by plants growing under natural conditions.

5.
Nat Commun ; 12(1): 2014, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795677

ABSTRACT

Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect accumulation of damage and compensatory adaptations to preserve tissue integrity. To characterize these changes, RNA was extracted and sequenced from muscle biopsies collected from 53 healthy individuals (22-83 years old) of the GESTALT study of the National Institute on Aging-NIH. Expression levels of 57,205 protein-coding and non-coding RNAs were studied as a function of aging by linear and negative binomial regression models. From both models, 1134 RNAs changed significantly with age. The most differentially abundant mRNAs encoded proteins implicated in several age-related processes, including cellular senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed significantly with age in skeletal muscle were enriched for proteins involved in oxidative phosphorylation and adipogenesis. Our study establishes a detailed framework of the global transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.


Subject(s)
Healthy Aging/genetics , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Female , Gene Expression Profiling , Homeostasis/genetics , Humans , Male , Middle Aged , Muscular Diseases/genetics , RNA Isoforms/genetics , RNA, Untranslated/genetics , Young Adult
6.
Nat Plants ; 7(1): 87-98, 2021 01.
Article in English | MEDLINE | ID: mdl-33432159

ABSTRACT

TAP38/STN7-dependent (de)phosphorylation of light-harvesting complex II (LHCII) regulates the relative excitation rates of photosystems I and II (PSI, PSII) (state transitions) and the size of the thylakoid grana stacks (dynamic thylakoid stacking). Yet, it remains unclear how changing grana size benefits photosynthesis and whether these two regulatory mechanisms function independently. Here, by comparing Arabidopsis wild-type, stn7 and tap38 plants with the psal mutant, which undergoes dynamic thylakoid stacking but lacks state transitions, we explain their distinct roles. Under low light, smaller grana increase the rate of PSI reduction and photosynthesis by reducing the diffusion distance for plastoquinol; however, this beneficial effect is only apparent when PSI/PSII excitation balance is maintained by state transitions or far-red light. Under high light, the larger grana slow plastoquinol diffusion and lower the equilibrium constant between plastocyanin and PSI, maximizing photosynthesis by avoiding PSI photoinhibition. Loss of state transitions in low light or maintenance of smaller grana in high light also both bring about a decrease in cyclic electron transfer and over-reduction of the PSI acceptor side. These results demonstrate that state transitions and dynamic thylakoid stacking work synergistically to regulate photosynthesis in variable light.


Subject(s)
Photosystem I Protein Complex/metabolism , Thylakoids/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Electron Transport , Photosynthesis , Photosystem I Protein Complex/physiology , Thylakoids/physiology
8.
Plant J ; 105(1): 223-244, 2021 01.
Article in English | MEDLINE | ID: mdl-33118270

ABSTRACT

Photosynthetic acclimation, the ability to adjust the composition of the thylakoid membrane to optimise the efficiency of electron transfer to the prevailing light conditions, is crucial to plant fitness in the field. While much is known about photosynthetic acclimation in Arabidopsis, to date there has been no study that combines both quantitative label-free proteomics and photosynthetic analysis by gas exchange, chlorophyll fluorescence and P700 absorption spectroscopy. Using these methods we investigated how the levels of 402 thylakoid proteins, including many regulatory proteins not previously quantified, varied upon long-term (weeks) acclimation of Arabidopsis to low (LL), moderate (ML) and high (HL) growth light intensity and correlated these with key photosynthetic parameters. We show that changes in the relative abundance of cytb6 f, ATP synthase, FNR2, TIC62 and PGR6 positively correlate with changes in estimated PSII electron transfer rate and CO2 assimilation. Improved photosynthetic capacity in HL grown plants is paralleled by increased cyclic electron transport, which positively correlated with NDH, PGRL1, FNR1, FNR2 and TIC62, although not PGR5 abundance. The photoprotective acclimation strategy was also contrasting, with LL plants favouring slowly reversible non-photochemical quenching (qI), which positively correlated with LCNP, while HL plants favoured rapidly reversible quenching (qE), which positively correlated with PSBS. The long-term adjustment of thylakoid membrane grana diameter positively correlated with LHCII levels, while grana stacking negatively correlated with CURT1 and RIQ protein abundance. The data provide insights into how Arabidopsis tunes photosynthetic electron transfer and its regulation during developmental acclimation to light intensity.


Subject(s)
Acclimatization , Arabidopsis/radiation effects , Proteome/radiation effects , Thylakoids/radiation effects , Arabidopsis/metabolism , Arabidopsis/physiology , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Electron Transport , Light/adverse effects , Mass Spectrometry , Photosynthesis/radiation effects , Photosystem II Protein Complex/metabolism , Proteome/metabolism , Proteome/physiology , Thylakoids/metabolism , Thylakoids/physiology
9.
Front Cell Dev Biol ; 8: 581882, 2020.
Article in English | MEDLINE | ID: mdl-33304899

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia. Amyloid ß (Aß) plaques, tau-containing neurofibrillary tangles, and neuronal loss leading to brain atrophy are pathologic hallmarks of AD. Given the importance of early diagnosis, extensive efforts have been undertaken to identify diagnostic and prognostic biomarkers for AD. Circulating extracellular vesicles (EVs) provide a platform for "liquid biopsy" biomarkers for AD. Here, we characterized the RNA contents of plasma EVs of age-matched individuals who were cognitively normal (healthy controls (HC)) or had mild cognitive impairment (MCI) due to AD or had mild AD dementia (AD). Using RNA sequencing analysis, we found that mitochondrial (mt)-RNAs, including MT-ND1-6 mRNAs and other protein-coding and non-coding mt-RNAs, were strikingly elevated in plasma EVs of MCI and AD individuals compared with HC. EVs secreted from cultured astrocytes, microglia, and neurons after exposure to toxic conditions relevant to AD pathogenesis (Aß aggregates and H2O2), contained mitochondrial structures (detected by electron microscopy) and mitochondrial RNA and protein. We propose that in the AD brain, toxicity-causing mitochondrial damage results in the packaging of mitochondrial components for export in EVs and further propose that mt-RNAs in plasma EVs can be diagnostic and prognostic biomarkers for MCI and AD.

10.
Sci Adv ; 6(33): eaaz8850, 2020 08.
Article in English | MEDLINE | ID: mdl-32851160

ABSTRACT

Immunoglobulin heavy chain (IgH) genes are assembled by two sequential DNA rearrangement events that are initiated by recombination activating gene products (RAG) 1 and 2. Diversity (DH) gene segments rearrange first, followed by variable (VH) gene rearrangements. Here, we provide evidence that each rearrangement step is guided by different rules of engagement between rearranging gene segments. DH gene segments, which recombine by deletion of intervening DNA, must be located within a RAG1/2 scanning domain for efficient recombination. In the absence of intergenic control region 1, a regulatory sequence that delineates the RAG scanning domain on wild-type IgH alleles, VH and DH gene segments can recombine with each other by both deletion and inversion of intervening DNA. We propose that VH gene segments find their targets by distinct mechanisms from those that apply to DH gene segments. These distinctions may underlie differential allelic choice associated with each step of IgH gene assembly.

11.
Biophys J ; 119(2): 287-299, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32621865

ABSTRACT

The light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition that regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting complex II (LHCII), which cause a decrease in grana diameter and stacking, a decrease in energetic connectivity between photosystem II (PSII) reaction centers, and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intramembrane lateral PSII-LHCII and LHCII-LHCII interactions and the intermembrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.


Subject(s)
Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism
12.
Mech Ageing Dev ; 184: 111150, 2019 12.
Article in English | MEDLINE | ID: mdl-31574270

ABSTRACT

In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.


Subject(s)
Aging/genetics , Aging/physiology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/physiology , Hypothalamus/metabolism , Animals , Cluster Analysis , Computational Biology , Female , Longevity/genetics , Longevity/physiology , Male , Mice , Mice, Inbred C57BL , RNA/biosynthesis , RNA/genetics , Sex Characteristics , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome
13.
J Am Heart Assoc ; 8(20): e012138, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31576777

ABSTRACT

Background Elevated levels of an endogenous Na/K-ATPase inhibitor marinobufagenin accompany salt-sensitive hypertension and are implicated in cardiac fibrosis. Immunoneutralization of marinobufagenin reduces blood pressure in Dahl salt-sensitive (Dahl-S) rats. The effect of the anti-marinobufagenin monoclonal antibody on blood pressure, left ventricular (LV) and renal remodeling, and gene expression were investigated in hypertensive Dahl-S rats. Methods and Results Dahl-S rats were fed high NaCl (8%, HS; n=14) or low NaCl (0.1%, LS; n=14) diets for 8 weeks. Animals were administered control antibody (LS control antibody, LSC; HS control antibody, HSC; n=7 per group) or anti-marinobufagenin antibody once on week 7 of diet intervention (n=7 per group). Levels of marinobufagenin, LV, and kidney mRNAs and proteins implicated in profibrotic signaling were assessed. Systolic blood pressure was elevated (211±8 versus 133±3 mm Hg, P<0.01), marinobufagenin increased 2-fold in plasma (P<0.05) and 5-fold in urine (P<0.01), LV and kidney weights increased, and levels of LV collagen-1 rose 3.5-fold in HSC versus LSC. Anti-marinobufagenin antibody treatment decreased systolic blood pressure by 24 mm Hg (P<0.01) and reduced organ weights and level of LV collagen-1 (P<0.01) in hypertensive Dahl salt-sensitive rats with anti-marinobufagenin antibody versus HSC. The expression of genes related to transforming growth factor-ß-dependent signaling was upregulated in the left ventricles and kidneys in HSC versus LSC groups and became downregulated following administration of anti-marinobufagenin antibody to hypertensive Dahl-S rats. Marinobufagenin also activated transforming growth factor-ß signaling in cultured ventricular myocytes from Dahl-S rats. Conclusions Immunoneutralization of heightened marinobufagenin levels in hypertensive Dahl-S rats resulted in a downregulation of genes implicated in transforming growth factor-ß pathway, which indicates that marinobufagenin is an activator of profibrotic transforming growth factor-ß-dependent signaling in salt-sensitive hypertension.


Subject(s)
Bufanolides/pharmacology , Gene Expression Regulation , Heart Ventricles/metabolism , Hypertension/genetics , Transforming Growth Factor beta/genetics , Ventricular Remodeling/physiology , Animals , Blood Pressure/drug effects , Blotting, Western , Disease Models, Animal , Echocardiography , Enzyme Inhibitors/pharmacology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Hypertension/drug therapy , Hypertension/physiopathology , Male , RNA/genetics , Rats , Rats, Inbred Dahl , Transforming Growth Factor beta/biosynthesis
14.
Front Immunol ; 9: 2426, 2018.
Article in English | MEDLINE | ID: mdl-30483245

ABSTRACT

Functional antigen receptor genes are assembled by somatic rearrangements that are largely lymphocyte lineage specific. The immunoglobulin heavy chain (IgH) gene locus is unique amongst the seven antigen receptor loci in undergoing partial gene rearrangements in the wrong lineage. Here we demonstrate that breakdown of lineage-specificity is associated with inappropriate activation of the Eµ enhancer during T cell development by a different constellation of transcription factors than those used in developing B cells. This is reflected in reduced enhancer-induced epigenetic changes, eRNAs, formation of the RAG1/2-rich recombination center, attenuated chromatin looping and markedly different utilization of DH gene segments in CD4+CD8+ (DP) thymocytes. Additionally, CTCF-dependent VH locus compaction is disrupted in DP cells despite comparable transcription factor binding in both lineages. These observations identify multiple mechanisms that contribute to lineage-specific antigen receptor gene assembly.


Subject(s)
Gene Expression Regulation , Genetic Loci , Immunoglobulin Heavy Chains/genetics , Thymocytes/immunology , Thymocytes/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Chromatin/genetics , Enhancer Elements, Genetic , Introns , Mice , ROC Curve , Thymocytes/cytology , V(D)J Recombination
15.
PLoS Biol ; 16(9): e2006347, 2018 09.
Article in English | MEDLINE | ID: mdl-30199532

ABSTRACT

Transcription factor nuclear factor kappa B (NF-κB) regulates cellular responses to environmental cues. Many stimuli induce NF-κB transiently, making time-dependent transcriptional outputs a fundamental feature of NF-κB activation. Here we show that NF-κB target genes have distinct kinetic patterns in activated B lymphoma cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. We also identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells.


Subject(s)
Gene Expression Regulation , NF-kappa B/metabolism , Transcription, Genetic , B-Lymphocytes/metabolism , Cell Line , Humans , I-kappa B Kinase/metabolism , Kinetics , Protein Binding , Transcription Factor RelA/metabolism , Up-Regulation/genetics
16.
Nat Plants ; 4(6): 391, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29844411

ABSTRACT

In the version of this Article originally published, the authors incorrectly labelled the timescale in Fig. 6b as milliseconds (ms) on the x axis and the indicated half-life values; the correct units are microseconds (µs). The figure has now been amended in all versions of the Article.

17.
Aging Cell ; 17(4): e12785, 2018 08.
Article in English | MEDLINE | ID: mdl-29797538

ABSTRACT

Circulating extracellular RNAs (exRNAs) are potential biomarkers of disease. We thus hypothesized that age-related changes in exRNAs can identify age-related processes. We profiled both large and small RNAs in human serum to investigate changes associated with normal aging. exRNA was sequenced in 13 young (30-32 years) and 10 old (80-85 years) African American women to identify all RNA transcripts present in serum. We identified age-related differences in several RNA biotypes, including mitochondrial transfer RNAs, mitochondrial ribosomal RNA, and unprocessed pseudogenes. Age-related differences in unique RNA transcripts were further validated in an expanded cohort. Pathway analysis revealed that EIF2 signaling, oxidative phosphorylation, and mitochondrial dysfunction were among the top pathways shared between young and old. Protein interaction networks revealed distinct clusters of functionally-related protein-coding genes in both age groups. These data provide timely and relevant insight into the exRNA repertoire in serum and its change with aging.


Subject(s)
Aging/metabolism , Extracellular Vesicles/metabolism , RNA/metabolism , Adult , Aged, 80 and over , Aging/genetics , Extracellular Vesicles/genetics , Female , Humans , RNA/blood , RNA/genetics , RNA, Circular
18.
Mol Cell ; 70(1): 21-33.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576529

ABSTRACT

Immunoglobulin heavy-chain (IgH) genes are assembled by DNA rearrangements that juxtapose a variable (VH), a diversity (DH), and a joining (JH) gene segment. Here, we report that in the absence of intergenic control region 1 (IGCR1), the intronic enhancer (Eµ) associates with the next available CTCF binding site located close to VH81X via putative heterotypic interactions involving YY1 and CTCF. The alternate Eµ/VH81X loop leads to formation of a distorted recombination center and altered DH rearrangements and disrupts chromosome conformation that favors distal VH recombination. Cumulatively, these features drive highly skewed, Eµ-dependent recombination of VH81X. Sequential deletion of CTCF binding regions on IGCR1-deleted alleles suggests that they influence recombination of single proximal VH gene segments. Our observations demonstrate that Eµ interacts differently with IGCR1- or VH-associated CTCF binding sites and thereby identify distinct roles for insulator-like elements in directing enhancer activity.


Subject(s)
Chromatin Assembly and Disassembly , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Genes, Immunoglobulin Heavy Chain , Genetic Loci , Immunoglobulin Variable Region/genetics , Precursor Cells, B-Lymphoid/metabolism , Recombination, Genetic , Animals , Binding Sites , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Line , DNA, Intergenic/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Mice, 129 Strain , Mice, Knockout , Nucleic Acid Conformation , Precursor Cells, B-Lymphoid/immunology , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
19.
Nat Plants ; 4(2): 116-127, 2018 02.
Article in English | MEDLINE | ID: mdl-29379151

ABSTRACT

Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Spinacia oleracea/physiology , Carbon Cycle , Chloroplasts/metabolism , Cytochromes b6/metabolism , Darkness , Dimerization , Electron Transport , Light , Phosphorylation , Spinacia oleracea/radiation effects , Spinacia oleracea/ultrastructure , Thylakoids/metabolism
20.
J Biol Chem ; 292(27): 11508-11530, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28522608

ABSTRACT

The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior.


Subject(s)
Behavior, Animal , Dendritic Spines/metabolism , Learning , Memory , Neurites/metabolism , Receptors, G-Protein-Coupled/deficiency , Social Behavior , Animals , Dendritic Spines/pathology , Mice , Mice, Knockout , Neurites/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...