Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 5368, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772168

ABSTRACT

Many complex processes, from protein folding to neuronal network dynamics, can be described as stochastic exploration of a high-dimensional energy landscape. Although efficient algorithms for cluster detection in high-dimensional spaces have been developed over the last two decades, considerably less is known about the reliable inference of state transition dynamics in such settings. Here we introduce a flexible and robust numerical framework to infer Markovian transition networks directly from time-independent data sampled from stationary equilibrium distributions. We demonstrate the practical potential of the inference scheme by reconstructing the network dynamics for several protein-folding transitions, gene-regulatory network motifs, and HIV evolution pathways. The predicted network topologies and relative transition time scales agree well with direct estimates from time-dependent molecular dynamics data, stochastic simulations, and phylogenetic trees, respectively. Owing to its generic structure, the framework introduced here will be applicable to high-throughput RNA and protein-sequencing datasets, and future cryo-electron microscopy (cryo-EM) data.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks , Protein Folding , Proteins , Evolution, Molecular , HIV/genetics , Markov Chains , Molecular Dynamics Simulation , Proteins/chemistry , Proteins/genetics
2.
Proc Math Phys Eng Sci ; 475(2227): 20190146, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31423095

ABSTRACT

Mechanical metamaterials are designed to enable unique functionalities, but are typically limited by an initial energy state and require an independent energy input to function repeatedly. Our study introduces a theoretical active mechanical metamaterial that incorporates a biological reaction mechanism to overcome this key limitation of passive metamaterials. Our material allows for reversible mechanical signal transmission, where energy is reintroduced by the biologically motivated reaction mechanism. By analysing a coarse-grained continuous analogue of the discrete model, we find that signals can be propagated through the material by a travelling wave. Analysis of the continuum model provides the region of the parameter space that allows signal transmission, and reveals similarities with the well-known FitzHugh-Nagumo system. We also find explicit formulae that approximate the effect of the time scale of the reaction mechanism on the signal transmission speed, which is essential for controlling the material.

3.
Phys Rev Lett ; 121(17): 178001, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411906

ABSTRACT

A zero mode, or floppy mode, is a nontrivial coupling of mechanical components yielding a degree of freedom with no resistance to deformation. Engineered zero modes have the potential to act as microscopic motors or memory devices, but this requires an internal actuation mechanism that can overcome unwanted fluctuations in other modes and the dissipation inherent in real systems. In this Letter, we show theoretically and experimentally that complex zero modes in mechanical networks can be selectively mobilized by nonequilibrium activity. We find that a correlated active bath actuates an infinitesimal zero mode while simultaneously suppressing fluctuations in higher modes compared to thermal fluctuations, which we experimentally mimic by high frequency shaking of a physical network. Furthermore, self-propulsive dynamics spontaneously mobilize finite mechanisms as exemplified by a self-propelled topological soliton. Nonequilibrium activity thus enables autonomous actuation of coordinated mechanisms engineered through network topology.

4.
Phys Rev E ; 97(6-1): 062301, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011429

ABSTRACT

A random search process in a networked environment is governed by the time it takes to visit every node, termed the cover time. Often, a networked process does not proceed in isolation but competes with many instances of itself within the same environment. A key unanswered question is how to optimize this process: How many concurrent searchers can a topology support before the benefits of parallelism are outweighed by competition for space? Here, we introduce the searcher-averaged parallel cover time (APCT) to quantify these economies of scale. We show that the APCT of the networked symmetric exclusion process is optimized at a searcher density that is well predicted by the spectral gap. Furthermore, we find that nonequilibrium processes, realized through the addition of bias, can support significantly increased density optima. Our results suggest alternative hybrid strategies of serial and parallel search for efficient information gathering in social interaction and biological transport networks.

5.
Phys Rev Lett ; 119(2): 028102, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753360

ABSTRACT

Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.

6.
Nat Commun ; 8: 15169, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28440273

ABSTRACT

Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.

7.
Proc Natl Acad Sci U S A ; 113(29): 8200-5, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27382186

ABSTRACT

Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.


Subject(s)
Models, Theoretical , Physical Phenomena , Stochastic Processes
8.
Nat Phys ; 12: 341-345, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27213004

ABSTRACT

Despite their inherent non-equilibrium nature1, living systems can self-organize in highly ordered collective states2,3 that share striking similarities with the thermodynamic equilibrium phases4,5 of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies6,7, microbial suspensions8,9 and tissues10 to the coherent macro-scale dynamics in schools of fish11 and flocks of birds12. Yet, the generic mathematical principles that govern the emergence of structure in such artificial13 and biological6-9,14 systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: Through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling through changes of the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents15,16, reminiscent of those in quantum systems17-19. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.

9.
Ann Biomed Eng ; 44(1): 222-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26206679

ABSTRACT

Treatment options for osteoarthritis (OA) beyond pain relief or total knee replacement are very limited. Because of this, attention has shifted to identifying which factors increase the risk of OA in vulnerable populations in order to be able to give recommendations to delay disease onset or to slow disease progression. The gold standard is then to use principles of risk management, first to provide subject-specific estimates of risk and then to find ways of reducing that risk. Population studies of OA risk based on statistical associations do not provide such individually tailored information. Here we argue that mechanistic models of cartilage tissue maintenance and damage coupled to statistical models incorporating model uncertainty, united within the framework of structural reliability analysis, provide an avenue for bridging the disciplines of epidemiology, cell biology, genetics and biomechanics. Such models promise subject-specific OA risk assessment and personalized strategies for mitigating or even avoiding OA. We illustrate the proposed approach with a simple model of cartilage extracellular matrix synthesis and loss regulated by daily physical activity.


Subject(s)
Cartilage , Extracellular Matrix , Models, Biological , Osteoarthritis, Knee , Cartilage/metabolism , Cartilage/pathology , Cartilage/physiopathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Humans , Male , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/physiopathology , Predictive Value of Tests , Risk Assessment
10.
J Theor Biol ; 368: 102-12, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25591888

ABSTRACT

Over ten percent of the population are afflicted by osteoarthritis, a chronic disease of diarthrodial joints such as the knees and hips, costing hundreds of billions of dollars every year. In this condition, the thin layers of articular cartilage on the bones degrade and weaken over years, causing pain, stiffness and eventual immobility. The biggest controllable risk factor is long-term mechanical overloading of the cartilage, but the disparity in time scales makes this process a challenge to model: loading events can take place every second, whereas degradation occurs over many months. Therefore, a suitable model must be sufficiently simple to permit evaluation over long periods of variable loading, yet must deliver results sufficiently accurate to be of clinical use, conditions unmet by existing models. To address this gap, we construct a two-component poroelastic model endowed with a new flow restricting boundary condition, which better represents the joint space environment compared to the typical free-flow condition. Under both static and cyclic loading, we explore the rate of gradual consolidation of the medium. In the static case, we analytically characterise the duration of consolidation, which governs the duration of effective fluid-assisted lubrication. In the oscillatory case, we identify a region of persistent strain oscillations in otherwise consolidated tissue, and derive estimates of its depth and magnitude. Finally, we link the two cases through the concept of an equivalent static stress, and discuss how our results help explain the inexorable cartilage degeneration of osteoarthritis.


Subject(s)
Cartilage, Articular/physiopathology , Models, Biological , Osteoarthritis/physiopathology , Biomechanical Phenomena , Humans , Stress, Mechanical , Weight-Bearing/physiology
11.
Proc Natl Acad Sci U S A ; 110(35): 14132-7, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940314

ABSTRACT

Many cells exhibit large-scale active circulation of their entire fluid contents, a process termed cytoplasmic streaming. This phenomenon is particularly prevalent in plant cells, often presenting strikingly regimented flow patterns. The driving mechanism in such cells is known: myosin-coated organelles entrain cytoplasm as they process along actin filament bundles fixed at the periphery. Still unknown, however, is the developmental process that constructs the well-ordered actin configurations required for coherent cell-scale flow. Previous experimental works on streaming regeneration in cells of Characean algae, whose longitudinal flow is perhaps the most regimented of all, hint at an autonomous process of microfilament self-organization driving the formation of streaming patterns during morphogenesis. Working from first principles, we propose a robust model of streaming emergence that combines motor dynamics with both microscopic and macroscopic hydrodynamics to explain how several independent processes, each ineffectual on its own, can reinforce to ultimately develop the patterns of streaming observed in the Characeae and other streaming species.


Subject(s)
Actin Cytoskeleton/metabolism , Chara/metabolism , Cytoplasmic Streaming , Actins/metabolism , Chara/cytology , Models, Biological
12.
Phys Rev Lett ; 111(3): 038103, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23909365

ABSTRACT

The viscosity of lipid bilayer membranes plays an important role in determining the diffusion constant of embedded proteins and the dynamics of membrane deformations, yet it has historically proven very difficult to measure. Here we introduce a new method based on quantification of the large-scale circulation patterns induced inside vesicles adhered to a solid surface and subjected to simple shear flow in a microfluidic device. Particle image velocimetry based on spinning disk confocal imaging of tracer particles inside and outside of the vesicle and tracking of phase-separated membrane domains are used to reconstruct the full three-dimensional flow pattern induced by the shear. These measurements show excellent agreement with the predictions of a recent theoretical analysis, and allow direct determination of the membrane viscosity.


Subject(s)
Membranes/chemistry , Models, Biological , Models, Chemical , Vacuoles/chemistry , Chara/chemistry , Chara/cytology , Chara/metabolism , Membranes/metabolism , Microfluidic Analytical Techniques , Vacuoles/metabolism , Viscosity
13.
Phys Rev Lett ; 110(26): 268102, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23848925

ABSTRACT

Confining surfaces play crucial roles in dynamics, transport, and order in many physical systems, but their effects on active matter, a broad class of dynamically self-organizing systems, are poorly understood. We investigate here the influence of global confinement and surface curvature on collective motion by studying the flow and orientational order within small droplets of a dense bacterial suspension. The competition between radial confinement, self-propulsion, steric interactions, and hydrodynamics robustly induces an intriguing steady single-vortex state, in which cells align in inward spiraling patterns accompanied by a thin counterrotating boundary layer. A minimal continuum model is shown to be in good agreement with these observations.


Subject(s)
Bacillus subtilis/physiology , Models, Biological , Algorithms , Bacillus subtilis/chemistry , Bacteriological Techniques , Surface Properties , Suspensions/chemistry , Swimming
14.
Phys Rev Lett ; 109(16): 168105, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215137

ABSTRACT

Many active fluid systems encountered in biology are set in total geometric confinement. Cytoplasmic streaming in plant cells is a prominent and ubiquitous example, in which cargo-carrying molecular motors move along polymer filaments and generate coherent cell-scale flow. When filaments are not fixed to the cell periphery, a situation found both in vivo and in vitro, we observe that the basic dynamics of streaming are closely related to those of a nonmotile stresslet suspension. Under this model, it is demonstrated that confinement makes possible a stable circulating state; a linear stability analysis reveals an activity threshold for spontaneous autocirculation. Numerical analysis of the longtime behavior reveals a phenomenon akin to defect separation in nematic liquid crystals and a high-activity bifurcation to an oscillatory regime.


Subject(s)
Cytoplasmic Streaming , Models, Biological , Hydrodynamics , Liquid Crystals , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...