Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
J Med Genet ; 61(2): 163-170, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37816627

ABSTRACT

BACKGROUND: Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition. METHODS: Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed. RESULTS: In the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls. CONCLUSION: A single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1.


Subject(s)
Complex Regional Pain Syndromes , Male , Female , Humans , Complex Regional Pain Syndromes/genetics , Complex Regional Pain Syndromes/epidemiology , Gene Frequency , Polymorphism, Single Nucleotide/genetics , Alleles , Genetic Background
2.
Am J Hum Genet ; 110(8): 1343-1355, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541188

ABSTRACT

Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.


Subject(s)
Genome, Human , Neurodevelopmental Disorders , Humans , Genome, Human/genetics , Chromosome Mapping , Base Sequence , INDEL Mutation , Neurodevelopmental Disorders/genetics
3.
Cell Rep ; 32(3): 107941, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697988

ABSTRACT

By studying healthy women who do not request analgesia during their first delivery, we investigate genetic effects on labor pain. Such women have normal sensory and psychometric test results, except for significantly higher cuff pressure pain. We find an excess of heterozygotes carrying the rare allele of SNP rs140124801 in KCNG4. The rare variant KV6.4-Met419 has a dominant-negative effect and cannot modulate the voltage dependence of KV2.1 inactivation because it fails to traffic to the plasma membrane. In vivo, Kcng4 (KV6.4) expression occurs in 40% of retrograde-labeled mouse uterine sensory neurons, all of which express KV2.1, and over 90% express the nociceptor genes Trpv1 and Scn10a. In neurons overexpressing KV6.4-Met419, the voltage dependence of inactivation for KV2.1 is more depolarized compared with neurons overexpressing KV6.4. Finally, KV6.4-Met419-overexpressing neurons have a higher action potential threshold. We conclude that KV6.4 can influence human labor pain by modulating the excitability of uterine nociceptors.


Subject(s)
Labor Pain/metabolism , Potassium Channels, Voltage-Gated/metabolism , Protein Subunits/metabolism , Adult , Alleles , Amino Acid Sequence , Analgesics/pharmacology , Animals , Base Sequence , Cell Membrane/metabolism , Cognition , Cohort Studies , Emotions , Female , Ganglia, Spinal/metabolism , Heterozygote , Humans , Ion Channel Gating/genetics , Labor Pain/genetics , Labor Pain/physiopathology , Male , Mice, Inbred C57BL , Models, Biological , Mutation/genetics , Nociceptors/metabolism , Pain Threshold , Polymorphism, Single Nucleotide/genetics , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Pregnancy , Protein Multimerization , Sensory Receptor Cells/metabolism , Shab Potassium Channels/metabolism , Subcellular Fractions/metabolism , Uterus/innervation
4.
Cell Rep ; 26(13): 3522-3536.e5, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917309

ABSTRACT

In humans, many cases of congenital insensitivity to pain (CIP) are caused by mutations of components of the NGF/TrkA signaling pathway, which is required for survival and specification of nociceptors and plays a major role in pain processing. Mutations in PRDM12 have been identified in CIP patients that indicate a putative role for this transcriptional regulator in pain sensing. Here, we show that Prdm12 expression is restricted to developing and adult nociceptors and that its genetic ablation compromises their viability and maturation. Mechanistically, we find that Prdm12 is required for the initiation and maintenance of the expression of TrkA by acting as a modulator of Neurogenin1/2 transcription factor activity, in frogs, mice, and humans. Altogether, our results identify Prdm12 as an evolutionarily conserved key regulator of nociceptor specification and as an actionable target for new pain therapeutics.


Subject(s)
Carrier Proteins/physiology , Nerve Tissue Proteins/physiology , Neurogenesis/physiology , Nociceptors/cytology , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carrier Proteins/genetics , Cell Line , Evolution, Molecular , Female , Ganglia, Sensory/cytology , Gene Knockout Techniques , Human Embryonic Stem Cells , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Nociceptors/metabolism , Receptor, trkA/metabolism , Tretinoin/physiology , Xenopus laevis
5.
J Med Genet ; 55(12): 803-813, 2018 12.
Article in English | MEDLINE | ID: mdl-30287594

ABSTRACT

BACKGROUND: Progressive encephalopathy, hypsarrhythmia and optic atrophy (PEHO) has been described as a clinically distinct syndrome. It has been postulated that it is an autosomal recessive condition. However, the aetiology is poorly understood, and the genetic basis of the condition has not been fully elucidated. Our objective was to discover if PEHO syndrome is a single gene disorder. METHOD: Children with PEHO and PEHO-like syndrome were recruited. Clinical, neurological and dysmorphic features were recorded; EEG reports and MRI scans were reviewed. Where possible, exome sequencing was carried out first to seek mutations in known early infantile developmental and epileptic encephalopathy (DEE) genes and then to use an agnostic approach to seek novel candidate genes. We sought intra-interfamilial phenotypic correlations and genotype-phenotype correlations when pathological mutations were identified. RESULTS: Twenty-three children were recruited from a diverse ethnic background, 19 of which were suitable for inclusion. They were similar in many of the core and the supporting features of PEHO, but there was significant variation in MRI and ophthalmological findings, even between siblings with the same mutation. A pathogenic genetic variant was identified in 15 of the 19 children. One further girl's DNA failed analysis, but her two affected sisters shared confirmed variants. Pathogenic variants were identified in seven different genes. CONCLUSIONS: We found significant clinical and genetic heterogeneity. Given the intrafamily variation demonstrated, we question whether the diagnostic criteria for MRI and ophthalmic findings should be altered. We also question whether PEHO and PEHO-like syndrome represent differing points on a clinical spectrum of the DEE. We conclude that PEHO and PEHO-like syndrome are clinically and genetically diverse entities-and are phenotypic endpoints of many severe genetic encephalopathies.


Subject(s)
Brain Edema/diagnosis , Brain Edema/etiology , Epilepsy/diagnosis , Epilepsy/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/etiology , Optic Atrophy/diagnosis , Optic Atrophy/etiology , Spasms, Infantile/diagnosis , Spasms, Infantile/etiology , Age Factors , Alleles , Biomarkers , Child, Preschool , Electroencephalography , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Genotype , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Phenotype
6.
Mol Pain ; 14: 1744806918809223, 2018.
Article in English | MEDLINE | ID: mdl-30296891

ABSTRACT

Bi-allelic dysfunctional mutations in nerve growth factor (NGF) cause the rare human phenotype hereditary sensory and autonomic neuropathy type 5 (HSAN5). We describe a novel NGF mutation in an individual with typical HSAN5 findings. The mutation c.361C>T, p.R121W is at the last residue of the furin cleavage motif Arg-Ser-Lys-Arg in proNGF. We show that the p.R121W mutation completely abolishes the formation of mature NGF-ß. Surprisingly, mutant p.R121W cells produced very little proNGF. Instead, the two progressive cleavage products of proNGF were produced, proA-NGF and proB-NGF, with proB-NGF being the predominant NGF-derived peptide and the only peptide secreted by mutant p.R121W cells. We found that the ability of the p.R121W mutation to cause tropomyosin receptor kinase A autophosphorylation and mitogen-activated protein kinase phosphorylation was significantly reduced compared to controls (p < 0.05 and p < 0.01). By studying the PC12 cell line morphology and neurite length over a week, we found the p.R121W mutation had residual, but much reduced, neurotrophic activity when compared to wild-type NGF. Finally, we assessed whether the p.R121W mutation affected apoptosis and found a reduced protective effect compared to wild-type NGF. Our results suggest that the p.R121W NGF mutation causes HSAN5 through negating the ability of furin to cleave proNGF to produce NGF-ß.


Subject(s)
Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation/genetics , Nerve Growth Factor/metabolism , Neurites/metabolism , Neurons/metabolism , Animals , Hereditary Sensory and Autonomic Neuropathies/metabolism , PC12 Cells , Phosphorylation/genetics , Protein Precursors/metabolism , Rats
8.
Brain ; 141(7): 1934-1945, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29868776

ABSTRACT

The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.


Subject(s)
Brain Diseases/genetics , Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , Adolescent , Adult , Brain/growth & development , Brain/metabolism , Brain Diseases/physiopathology , Child , Child, Preschool , Female , HEK293 Cells , Humans , Male , Microcephaly/genetics , Mutation , Pedigree , Protein Processing, Post-Translational , Proteins/physiology , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/physiology
9.
Sci Rep ; 8(1): 2340, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402896

ABSTRACT

The repertoire of cell types in the human nervous system arises through a highly orchestrated process, the complexity of which is still being discovered. Here, we present evidence that CHC22 has a non-redundant role in an early stage of neural precursor differentiation, providing a potential explanation of why CHC22 deficient patients are unable to feel touch or pain. We show the CHC22 effect on neural differentiation is independent of the more common clathrin heavy chain CHC17, and that CHC22-dependent differentiation is mediated through an autocrine/paracrine mechanism. Using quantitative proteomics, we define the composition of clathrin-coated vesicles in SH-SY5Y cells, and determine proteome changes induced by CHC22 depletion. In the absence of CHC22 a subset of dense core granule (DCG) neuropeptides accumulated, were processed into biologically active 'mature' forms, and secreted in sufficient quantity to trigger neural differentiation. When CHC22 is present, however, these DCG neuropeptides are directed to the lysosome and degraded, thus preventing differentiation. This suggests that the brief reduction seen in CHC22 expression in sensory neural precursors may license a step in neuron precursor neurodevelopment; and that this step is mediated through control of a novel neuropeptide processing pathway.


Subject(s)
Clathrin Heavy Chains/metabolism , Neuropeptides/metabolism , Proteolysis , Autocrine Communication , Cell Differentiation , Cell Line, Tumor , Clathrin Heavy Chains/genetics , Gene Knockdown Techniques , Humans , Lysosomes , Neurons , Paracrine Communication , Protein Transport
10.
Hum Mutat ; 39(3): 319-332, 2018 03.
Article in English | MEDLINE | ID: mdl-29243349

ABSTRACT

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Subject(s)
Microcephaly/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Child, Preschool , Cognition , Cohort Studies , Family , Female , Genetic Association Studies , Geography , Humans , Infant , Magnetic Resonance Imaging , Male , Microcephaly/epidemiology
11.
Science ; 357(6346): 83-88, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28572454

ABSTRACT

A recent outbreak of Zika virus in Brazil has led to a simultaneous increase in reports of neonatal microcephaly. Zika targets cerebral neural precursors, a cell population essential for cortical development, but the cause of this neurotropism remains obscure. Here we report that the neural RNA-binding protein Musashi-1 (MSI1) interacts with the Zika genome and enables viral replication. Zika infection disrupts the binding of MSI1 to its endogenous targets, thereby deregulating expression of factors implicated in neural stem cell function. We further show that MSI1 is highly expressed in neural progenitors of the human embryonic brain and is mutated in individuals with autosomal recessive primary microcephaly. Selective MSI1 expression in neural precursors could therefore explain the exceptional vulnerability of these cells to Zika infection.


Subject(s)
Genome, Viral , Microcephaly/metabolism , Microcephaly/virology , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Virus Replication , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Brain/abnormalities , Brain/metabolism , Brain/virology , Child , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Microcephaly/genetics , Mutation , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Neural Stem Cells/virology , Vero Cells , Zika Virus/genetics
12.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28413018

ABSTRACT

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Subject(s)
Epilepsy/genetics , Proteins/genetics , Spasms, Infantile/genetics , Synaptic Transmission , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Disease Models, Animal , Epilepsy/diagnosis , Fibroblasts/metabolism , Genotyping Techniques , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Mice , Mice, Transgenic , Mutation , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Proteins/metabolism , Purkinje Cells/metabolism , Spasms, Infantile/diagnosis , Synaptic Vesicles/metabolism , Transcriptome , Ubiquitin/genetics , Ubiquitin/metabolism
13.
J Allergy Clin Immunol ; 139(2): 634-642.e5, 2017 02.
Article in English | MEDLINE | ID: mdl-27522155

ABSTRACT

BACKGROUND: Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE: We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS: Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS: Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION: For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Sequence Deletion/genetics , Severe Combined Immunodeficiency/genetics , T-Lymphocytes/physiology , Adaptor Proteins, Signal Transducing/genetics , Apoptosis , Calcium Signaling/genetics , Cell Differentiation , Consanguinity , Female , Genotype , Homozygote , Humans , Jurkat Cells , Lymphocyte Activation , Male , Membrane Proteins/genetics , Pakistan , Pedigree , Receptors, Antigen, T-Cell/genetics , Transgenes/genetics
14.
Nat Commun ; 7: 11005, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987684

ABSTRACT

Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215-HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome-spindle pole interface by the CEP215-HSET complex could promote survival of cancer cells containing supernumerary centrosomes.


Subject(s)
Centrosome/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Neoplasms/metabolism , Nerve Tissue Proteins/metabolism , Spindle Poles/metabolism , Animals , Cell Cycle Proteins , Cell Line , Chickens , Cluster Analysis , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Kinesins/chemistry , Mice , Mutation/genetics , Nerve Tissue Proteins/chemistry , Protein Binding , Protein Interaction Maps , Protein Structure, Tertiary
15.
Brain ; 139(Pt 4): 1036-44, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26917597

ABSTRACT

Progressive encephalopathy with oedema, hypsarrhythmia and optic atrophy (PEHO) syndrome is a rare Mendelian phenotype comprising severe retardation, early onset epileptic seizures, optic nerve/cerebellar atrophy, pedal oedema, and early death. Atypical cases are often known as PEHO-like, and there is an overlap with 'early infantile epileptic encephalopathy'. PEHO is considered to be recessive, but surprisingly since initial description in 1991, no causative recessive gene(s) have been described. Hence, we report a multiplex consanguineous family with the PEHO phenotype where affected individuals had a homozygous frame-shift deletion in CCDC88A (c.2313delT, p.Leu772*ter). Analysis of cDNA extracted from patient lymphocytes unexpectedly failed to show non-sense mediated decay, and we demonstrate that the mutation produces a truncated protein lacking the crucial C-terminal half of CCDC88A (girdin). To further investigate the possible role of CCDC88A in human neurodevelopment we re-examined the behaviour and neuroanatomy of Ccdc88a knockout pups. These mice had mesial-temporal lobe epilepsy, microcephaly and corpus callosum deficiency, and by postnatal Day 21, microcephaly; the mice died at an early age. As the mouse knockout phenotype mimics the human PEHO phenotype this suggests that loss of CCDC88A is a cause of the PEHO phenotype, and that CCDC88A is essential for multiple aspects of normal human neurodevelopment.


Subject(s)
Brain Edema/diagnosis , Brain Edema/genetics , Microfilament Proteins/genetics , Mutation/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/genetics , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Vesicular Transport Proteins/genetics , Animals , Brain/pathology , Child , Female , Humans , Infant , Male , Mice , Mice, Knockout , Pedigree
16.
Trends Neurosci ; 38(11): 712-724, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26549885

ABSTRACT

Erroneous activation of the pain-sensing system, as in chronic or neuropathic pain, represents a major health burden with insufficient treatment options. However, the study of genetic disorders rendering individuals completely unable to feel pain offers hope. All causes of congenital painlessness affect nociceptors, evolutionarily conserved specialist neurons able to sense all type of tissue damage. The discovery of new genes essential for sensing pain (SCN11A, PRDM12, and CLTCL1) has provided unexpected insights into the biological mechanisms that drive distinct stages of nociception. Drugs targeting two previously discovered painlessness genes, NGF and SCN9A, are currently in late-stage clinical trials; thus, characterization of these new painlessness genes has significant potential for the generation of new classes of analgesics.


Subject(s)
Nociceptors/physiology , Pain Perception/physiology , Perceptual Disorders/genetics , Carrier Proteins/genetics , Clathrin Heavy Chains/genetics , Humans , NAV1.9 Voltage-Gated Sodium Channel/genetics , Nerve Tissue Proteins/genetics , Neurons/physiology , Perceptual Disorders/physiopathology
17.
PLoS One ; 10(6): e0128830, 2015.
Article in English | MEDLINE | ID: mdl-26035178

ABSTRACT

The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a. Overexpression analyses of the human NAT in human embryonic kidney (HEK293A) and human neuroblastoma (SH-SY5Y) cell lines show that it can function to downregulate Nav1.7 mRNA, protein levels and currents. The NAT may play an important role in regulating human pain thresholds and is a potential candidate gene for individuals with chronic pain disorders that map to the SCN9A locus, such as Inherited Primary Erythromelalgia, Paroxysmal Extreme Pain Disorder and Painful Small Fibre Neuropathy, but who do not contain mutations in the sense gene. Our results strongly suggest the SCN9A NAT as a prime candidate for new therapies based upon augmentation of existing antisense RNAs in the treatment of chronic pain conditions in man.


Subject(s)
Ganglia, Spinal/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , RNA, Antisense/metabolism , Animals , Cloning, Molecular , Computer Simulation , Conserved Sequence , Gene Expression Regulation , HEK293 Cells , Humans , Mice , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/genetics , Pain/metabolism , RNA, Antisense/chemistry , RNA, Messenger/metabolism
18.
Brain ; 138(Pt 8): 2147-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26068709

ABSTRACT

Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons.


Subject(s)
Clathrin Heavy Chains/genetics , Mutation/genetics , Neural Stem Cells/cytology , Neurogenesis/physiology , Pain/genetics , Touch/physiology , Cell Differentiation/physiology , Cell Line , Humans , Muscle, Skeletal/metabolism , Neurons/metabolism , Pain/metabolism
19.
J Neurosci ; 35(20): 7674-81, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25995458

ABSTRACT

The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.


Subject(s)
Erythromelalgia/genetics , Ion Channel Gating , Mutation, Missense , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain Insensitivity, Congenital/genetics , Pain/genetics , Rectum/abnormalities , Child , Erythromelalgia/metabolism , Female , HEK293 Cells , Humans , Male , NAV1.7 Voltage-Gated Sodium Channel/chemistry , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain/metabolism , Pain Insensitivity, Congenital/metabolism , Pedigree , Phenotype , Protein Structure, Tertiary , Rectum/metabolism
20.
Lancet Neurol ; 13(11): 1152-1160, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25316021

ABSTRACT

Human studies have firmly implicated voltage-gated sodium channels in human pain disorders, and targeted and massively parallel genomic sequencing is beginning to be used in clinical practice to determine which sodium channel variants are involved. Missense substitutions of SCN9A, the gene encoding sodium channel NaV1.7, SCN10A, the gene encoding sodium channel NaV1.8, and SCN11A, the gene encoding sodium channel NaV1.9, produce gain-of-function changes that contribute to pain in many human painful disorders. Genomic sequencing might help to establish a diagnosis, and in the future might support individualisation of therapeutic approaches. However, in many cases, and especially in sodium channelopathies, the results from genomic sequencing can only be appropriately interpreted in the context of an extensive functional assessment, or family segregation analysis of phenotype and genotype.


Subject(s)
Genotype , Pain/diagnosis , Pain/genetics , Phenotype , Sodium Channels/genetics , Animals , Humans , Mutation, Missense/genetics , Practice Guidelines as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...