Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36788632

ABSTRACT

Horizontal gene transfer (HGT) is important for microbial evolution, but how evolutionary forces shape the frequencies of horizontally transferred genetic variants in the absence of strong selection remains an open question. In this study, we evolve laboratory populations of Acinetobacter baylyi (ADP1) with HGT from two clinically relevant strains of multidrug-resistant Acinetobacter baumannii (AB5075 and A9844). We find that DNA can cross the species barrier, even without strong selection, and despite substantial DNA sequence divergence between the two species. Our results confirm previous findings that HGT can drive the spread of antibiotic resistance genes (ARGs) without selection for that antibiotic, but not for all of the resistance genes present in the donor genome. We quantify the costs and benefits of horizontally transferred variants and use whole population sequencing to track the spread of ARGs from HGT donors into antibiotic-sensitive recipients. We find that even though most ARGs are taken up by populations of A. baylyi, the long-term fate of an individual gene depends both on its fitness cost and on the type of genetic element that carries the gene. Interestingly, we also found that an integron, but not its host plasmid, is able to spread in A. baylyi populations despite its strong deleterious effect. Altogether, our results show how HGT provides an evolutionary advantage to evolving populations by facilitating the spread of non-selected genetic variation including costly ARGs.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Gene Transfer, Horizontal , Plasmids , Drug Resistance, Microbial , Acinetobacter baumannii/genetics
2.
Proc Natl Acad Sci U S A ; 119(27): e2116197119, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35767643

ABSTRACT

The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.


Subject(s)
Bacteria , Bacteriophages , Gastrointestinal Tract , Mucous Membrane , Animals , Bacteria/virology , Bacteriophages/genetics , Bacteriophages/physiology , Capsid Proteins/genetics , Gastrointestinal Tract/virology , Mucous Membrane/virology , Mucus , Mutation , Symbiosis
3.
Proc Natl Acad Sci U S A ; 119(12): e2119010119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35298339

ABSTRACT

Horizontal gene transfer (HGT) is important for microbial evolution, yet we know little about the fitness effects and dynamics of horizontally transferred genetic variants. In this study, we evolve laboratory populations of Helicobacter pylori, which take up DNA from their environment by natural transformation, and measure the fitness effects of thousands of transferred genetic variants. We find that natural transformation increases the rate of adaptation but comes at the cost of significant genetic load. We show that this cost is circumvented by recombination, which increases the efficiency of selection by decoupling deleterious and beneficial genetic variants. Our results show that adaptation with HGT, pervasive in natural microbial populations, is shaped by a combination of selection, recombination, and genetic drift not accounted for in existing models of evolution.


Subject(s)
Gene Transfer, Horizontal , Helicobacter pylori , Gene Transfer, Horizontal/genetics , Helicobacter pylori/genetics
4.
ISME J ; 16(5): 1442-1452, 2022 05.
Article in English | MEDLINE | ID: mdl-35066567

ABSTRACT

Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.


Subject(s)
Microbiota , Saccharomyces cerevisiae , Acclimatization , Adaptation, Physiological/genetics , Microbiota/genetics , Saccharomyces cerevisiae/genetics
5.
Nat Ecol Evol ; 5(3): 350-359, 2021 03.
Article in English | MEDLINE | ID: mdl-33432132

ABSTRACT

Most viruses can infect multiple hosts, yet the selective mechanisms that maintain multi-host generalists over single-host specialists remain an open question. Here we propagate populations of the newly identified bacteriophage øJB01 in coculture with many host genotypes and find that while phage can adapt to infect any of the new hosts, increasing the number of hosts slows the rate of adaptation. We quantify trade-offs in the capacity for individual phage to infect different hosts and find that phage from evolved populations with more hosts are more likely to be generalists. Sequencing of evolved phage reveals strong selection and the genetic basis of adaptation, supporting a model that shows how the addition of more potential hosts to a community can select for low-fitness generalists over high-fitness specialists. Our results show how evolution with multiple hosts alters the rate of viral adaptation and provides empirical support for an evolutionary mechanism that promotes generalists over specialists.


Subject(s)
Bacteriophages , Acclimatization , Adaptation, Physiological , Bacteriophages/genetics , Genotype , Specialization
6.
ISME J ; 15(3): 746-761, 2021 03.
Article in English | MEDLINE | ID: mdl-33093620

ABSTRACT

Microbial communities are comprised of many species that coexist on small spatial scales. This is difficult to explain because many interspecies interactions are competitive, and ecological theory predicts that one species will drive the extinction of another species that competes for the same resource. Conversely, evolutionary theory proposes that natural selection can lead to coexistence by driving competing species to use non-overlapping resources. However, evolutionary escape from extinction may be slow compared to the rate of competitive exclusion. Here, we use experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae to study the evolution of coexistence in species that compete for resources. We find that while E. coli usually outcompetes S. cerevisiae in co-culture, a few populations evolved stable coexistence after ~1000 generations of coevolution. We sequenced S. cerevisiae and E. coli populations, identified multi-hit genes, and engineered alleles from these genes into several genetic backgrounds, finding that some mutations modified interactions between E. coli and S. cerevisiae. Together, our data demonstrate that coexistence can evolve, de novo, from intense competition between two species with no history of coevolution.


Subject(s)
Escherichia coli , Saccharomyces cerevisiae , Biological Evolution , Coculture Techniques , Escherichia coli/genetics , Saccharomyces cerevisiae/genetics , Selection, Genetic
7.
Proc Natl Acad Sci U S A ; 117(43): 26868-26875, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33055207

ABSTRACT

Horizontal gene transfer (HGT) confers the rapid acquisition of novel traits and is pervasive throughout microbial evolution. Despite the central role of HGT, the evolutionary forces that drive the dynamics of HGT alleles in evolving populations are poorly understood. Here, we show that HGT alters the evolutionary dynamics of genetic variation, so that deleterious genetic variants, including antibiotic resistance genes, can establish in populations without selection. We evolve antibiotic-sensitive populations of the human pathogen Helicobacter pylori in an environment without antibiotic but with HGT from an antibiotic-resistant isolate of H. pylori We find that HGT increases the rate of adaptation, with most horizontally transferred genetic variants establishing at a low frequency in the population. When challenged with antibiotic, this low-level variation potentiates adaptation, with HGT populations flourishing in conditions where nonpotentiated populations go extinct. By extending previous models of evolution under HGT, we evaluated the conditions for the establishment and spread of HGT-acquired alleles into recipient populations. We then used our model to estimate parameters of HGT and selection from our experimental evolution data. Together, our findings show how HGT can act as an evolutionary force that facilitates the spread of nonselected genetic variation and expands the adaptive potential of microbial populations.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Helicobacter pylori/genetics , Anti-Bacterial Agents , Gene Flow , Genetic Fitness , Genetic Variation , Metronidazole , Selection, Genetic
8.
Nat Ecol Evol ; 4(3): 453-460, 2020 03.
Article in English | MEDLINE | ID: mdl-32042122

ABSTRACT

Sex is common among eukaryotes, but entails considerable costs. The selective conditions that drive the evolutionary maintenance of sexual reproduction remain an open question. One long-standing explanation is that sex and recombination facilitate adaptation to fluctuating environmental conditions, although the genetic mechanisms that underlie such a benefit have not been empirically observed. In this study, we compare the dynamics and fitness effects of mutations in sexual and asexual diploid populations of the yeast Saccharomyces cerevisiae during adaptation to a fluctuating environment. While we find no detectable difference in the rate of adaptation between sexual and asexual populations, only the former evolve high fitness mutations in parallel, a genetic signature of adaptation. Using genetic reconstructions and fitness assays, we demonstrate that evolved, overdominant mutations can be beneficial in asexual populations, but maintained at lower frequencies in sexual populations due to segregation load. Overall these data show that sex alters the molecular basis of adaptation in diploids, and confers both costs and benefits.


Subject(s)
Diploidy , Saccharomyces cerevisiae , Biological Evolution , Evolution, Molecular , Selection, Genetic
9.
ISME J ; 13(10): 2617-2632, 2019 10.
Article in English | MEDLINE | ID: mdl-31243332

ABSTRACT

Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H2), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H2 metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H2 production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g., Ruminococcus) accounted for half of all hydrogenase transcripts. Various H2 uptake pathways were also expressed, including methanogenesis (Methanobrevibacter), fumarate and nitrite reduction (Selenomonas), and acetogenesis (Blautia). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter Ruminococcus albus and the hydrogenotrophic fumarate reducer Wolinella succinogenes in co-culture compared with pure culture. We conclude that H2 metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H2. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H2 uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Hydrogen/metabolism , Methane/metabolism , Rumen/microbiology , Ruminants/microbiology , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Cellulose/metabolism , Euryarchaeota/genetics , Fermentation , Hydrogenase/genetics , Hydrogenase/metabolism , Rumen/metabolism , Ruminants/metabolism
10.
Mol Ecol Resour ; 16(6): 1279-1286, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27482846

ABSTRACT

Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Mitochondria/genetics , Plastids/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...