Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712202

ABSTRACT

The increased prevalence of opioid use disorder (OUD) has made it imperative to disentangle the biological mechanisms contributing to individual differences in susceptibility to OUD. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study (GWAS) using over 850 male and female heterogeneous stock rats to identify genes underlying behaviors associated with OUD such as analgesia, as well as heroin-taking, refraining and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we applied an animal model capturing individual variation in OUD propensity to assess if GWAS results were associated with OUD vulnerable versus resilient behavioral phenotypes. Our findings confirm the heritability of several OUD-like behaviors, including overall phenotype. We identified several genetic variants associated with basal analgesia prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin. Ets2 , a regulator of microglia functional plasticity, and its eQTL PCP4 were identified for heroin consumption, and were associated with an OUD vulnerable phenotype through phenotype wide association study analysis. Furthermore, the coding variant Phd1l2 and the eQTL MMP15 for break point are both known mediators of addiction-related behaviors, and correlated with OUD vulnerability. These findings identify novel genetic markers related to individual differences in the susceptibility to OUD-relevant behaviors.

2.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38559127

ABSTRACT

Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.

3.
Front Psychiatry ; 15: 1369783, 2024.
Article in English | MEDLINE | ID: mdl-38476614

ABSTRACT

Introduction: It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods: We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and ß-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results: Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of ß-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion: These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.

4.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609328

ABSTRACT

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.

5.
bioRxiv ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37503161

ABSTRACT

Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n=64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (iI) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.

6.
Nucleic Acids Res ; 50(19): 10882-10895, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36263809

ABSTRACT

Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci (QTL) associated with transcriptional changes would help to identify mechanisms underlying these traits. We generated genotype and transcriptome data for five brain regions from 88 HS rats. We identified 21 392 cis-QTLs associated with expression and splicing changes across all five brain regions and validated their effects using allele specific expression data. We identified 80 cases where eQTLs were colocalized with genome-wide association study (GWAS) results from nine physiological traits. Comparing our dataset to human data from the Genotype-Tissue Expression (GTEx) project, we found that the HS rat data yields twice as many significant eQTLs as a similarly sized human dataset. We also identified a modest but highly significant correlation between genetic regulatory variation among orthologous genes. Surprisingly, we found less genetic variation in gene regulation in HS rats relative to humans, though we still found eQTLs for the orthologs of many human genes for which eQTLs had not been found. These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new discoveries of the genetic influences of complex traits.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Rats , Humans , Quantitative Trait Loci/genetics , Transcriptome , Genotype , Brain , Polymorphism, Single Nucleotide
7.
Psychopharmacology (Berl) ; 239(11): 3605-3620, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36112154

ABSTRACT

RATIONALE: The ongoing rise in opioid use disorder (OUD) has made it imperative to better model the individual variation within the human population that contributes to OUD vulnerability. Using animal models that capture such variation can be a useful tool. Individual variation in novelty-induced locomotion is predictive of substance use disorder (SUD) propensity. In this model, rats are characterized as high-responders (HR) or low-responders (LR) using a median split based on distance travelled during a locomotor test, and HR rats are generally found to exhibit a more SUD vulnerable behavioral phenotype. OBJECTIVES: The HR/LR model has commonly been used to assess behaviors in male rats using psychostimulants, with limited knowledge of the predictive efficacy of this model in females or the use of an opioid as the reward. In the current study, we assessed several behaviors across the different phases of drug addiction (heroin taking, refraining, and seeking) in over 500 male and female heterogeneous stock rats run at two geographically separate locations. Rats were characterized as HRs or LRs within each sex for analysis. RESULTS: Overall, females exhibit a more OUD vulnerable phenotype relative to males. Additionally, the HR/LR model was predictive of OUD-like behaviors in male, but not female rats. Furthermore, phenotypes did not differ in anxiety-related behaviors, reacquisition of heroin-taking, or punished heroin-taking behavior in either sex. CONCLUSIONS: These results emphasize the importance of assessing females in models of individual variation in SUD and highlight limitations in using the HR/LR model to assess OUD propensity.


Subject(s)
Exploratory Behavior , Heroin Dependence , Humans , Female , Rats , Animals , Male , Analgesics, Opioid/pharmacology , Motor Activity , Heroin/pharmacology
8.
Sci Data ; 6(1): 39, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015470

ABSTRACT

We performed whole-genome sequencing for eight inbred rat strains commonly used in genetic mapping studies. They are the founders of the NIH heterogeneous stock (HS) outbred colony. We provide their sequences and variant calls to the rat genomics community. When analyzing the variant calls we identified regions with unusually high levels of heterozygosity. These regions are consistent across the eight inbred strains, including Brown Norway, which is the basis of the rat reference genome. These regions show higher read depths than other regions in the genome and contain higher rates of apparent tri-allelic variant sites. The evidence suggests that these regions may correspond to duplicated segments that were incorrectly overlaid as a single segment in the reference genome. We provide masks for these regions of suspected mis-assembly as a resource for the community to flag potentially false interpretations of mapping or functional results.


Subject(s)
Genome , Rats, Inbred Strains/genetics , Sequence Analysis, DNA , Alleles , Animals , Chromosome Mapping , Female , Rats
9.
Methods Mol Biol ; 1488: 31-44, 2017.
Article in English | MEDLINE | ID: mdl-27933519

ABSTRACT

Heterogeneous Stock (HS) populations allow for fine-resolution genetic mapping of a variety of complex traits. HS mice and rats were created from breeding together eight inbred strains, followed by maintaining the colony in a manner that minimizes inbreeding. After 50 or more generations of breeding, the resulting animals' chromosomes represent a genetic mosaic of the founders' haplotypes, with the average distance between recombination events in the centiMorgan range. This allows for genetic mapping to only a few Mb, a much smaller region than what can be identified using traditional F2 intercross or backcross mapping strategies. HS animals have been used to fine-map a variety of complex traits including anxiety and fear behaviors, diabetes, asthma, and heart disease, among others. Once a quantitative trait locus (QTL) has been identified, founder sequence and expression analysis can be used to identify underlying causal genes. In the following review, we provide an overview of how HS rats and mice have been used to identify genetic loci, and in some cases the causal genes, underlying complex traits. We discuss the creation and breeding strategies for both HS rats and mice. We then discuss the statistical analyses used to identify genetic loci, as well as strategies to identify causal genes underlying these loci. We end the chapter by discussing limitations faced when using HS populations, including several statistical challenges that have not been fully resolved.


Subject(s)
Genetic Techniques , Genetics, Population , Animals , Breeding , Chromosome Mapping , Genetic Association Studies , Genetic Variation , Genetics, Population/methods , Mice , Models, Genetic , Models, Statistical , Quantitative Trait Loci , Rats
10.
Psychopharmacology (Berl) ; 233(13): 2593-605, 2016 07.
Article in English | MEDLINE | ID: mdl-27146401

ABSTRACT

RATIONALE: Disorders of behavioral regulation, including attention deficit hyperactivity disorder (ADHD) and drug addiction, are in part due to poor inhibitory control, attentional deficits, and hyper-responsivity to reward-associated cues. OBJECTIVES: To determine whether these traits are related, we tested genetically variable male and female heterogeneous stock rats in the choice reaction time (CRT) task and Pavlovian conditioned approach (PavCA). Sex differences in the response to methylphenidate during the CRT were also assessed. METHODS: In the CRT task, rats were required to withhold responding until one of two lights indicated whether responses into a left or right port would be reinforced with water. Reaction time on correct trials and premature responses were the operational definitions of attention and response inhibition, respectively. Rats were also pretreated with oral methylphenidate (0, 2, 4 mg/kg) during the CRT task to determine whether this drug would improve performance. Subsequently, during PavCA, presentation of an illuminated lever predicted the delivery of a food pellet into a food-cup. Lever-directed approach (sign-tracking) and food-cup approach (goal-tracking) were the primary measures, and rats were categorized as "sign-trackers" and "goal-trackers" using an index based on these measures. RESULTS: Sign-trackers made more premature responses than goal-trackers but showed no differences in reaction time. There were sex differences in both tasks, with females having higher sign-tracking, completing more CRT trials, and making more premature responses after methylphenidate administration. CONCLUSIONS: These results indicate that response inhibition is related to reward-cue responsivity, suggesting that these traits are influenced by common genetic factors.


Subject(s)
Choice Behavior/physiology , Conditioning, Classical/physiology , Feeding Behavior/psychology , Animals , Cues , Female , Food , Inhibition, Psychological , Male , Models, Animal , Motivation , Rats , Rats, Sprague-Dawley , Reaction Time , Reward
11.
Int J Biol Sci ; 12(1): 100-8, 2016.
Article in English | MEDLINE | ID: mdl-26722221

ABSTRACT

Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods , Animals , Genotype , High-Throughput Nucleotide Sequencing , Humans
12.
Behav Brain Res ; 278: 462-9, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25446811

ABSTRACT

There is considerable individual variation in the propensity of animals to attribute incentive salience to discrete reward cues, but to date most of this research has been conducted in male rats. The purpose of this study was to determine whether sex influences the propensity to attribute incentive salience to a food cue, using rats from two different outbred strains (Sprague-Dawley [SD] and Heterogeneous Stock [HS]). The motivational value of a food cue was assessed in two ways: (i) by the ability of the cue to elicit approach toward it and (ii) by its ability to act as a conditioned reinforcer. We found that female SD rats acquired Pavlovian conditioned approach behavior slightly faster than males, but no sex difference was detected in HS rats, and neither strain showed a sex difference in asymptotic performance of approach behavior. Moreover, female approach behavior did not differ across estrous cycle. Compared to males, females made more active responses during the test for conditioned reinforcement, although they made more inactive responses as well. We conclude that although there are small sex differences in performance on these tasks, these are probably not due to a notable sex difference in the propensity to attribute incentive salience to a food cue.


Subject(s)
Conditioning, Classical/physiology , Cues , Individuality , Motivation/physiology , Sex Characteristics , Animals , Female , Food , Male , Motivation/genetics , Principal Component Analysis , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology
13.
J Nutrigenet Nutrigenomics ; 5(2): 81-93, 2012.
Article in English | MEDLINE | ID: mdl-22722880

ABSTRACT

BACKGROUND/AIMS: Recent studies have highlighted the importance of gene by diet interactions in contributing to risk factors of metabolic syndrome. We used a consomic rat panel, in which a chromosome of the Brown Norway (BN) strain is introgressed onto the background of the Dahl salt-sentitive (SS) strain, to test the hypothesis that these animals will be useful for dissecting gene by diet interactions involved in metabolic syndrome. METHODS: We placed the parental SS and BN strains on a low-fat/high-carbohydrate (LF) or high-fat/low-carbohydrate (HF) diet for 22 weeks and measured several indices of metabolic syndrome. We then investigated the effect of diet in eight consomic rat strains. RESULTS: We show that the HF diet resulted in significantly increased levels of fasting plasma cholesterol and triglycerides in the SS strain, with no effect in the BN. Both strains responded to the HF diet with slight increases in body weight. SSBN8 was the only consomic strain that resembled that of the BN, with low levels of fasting cholesterol and triglycerides even on the HF diet. CONCLUSIONS: These results indicate that BN chromosome 8 harbors a gene or genes that confer protection against dyslipidemia caused by the HF diet.


Subject(s)
Chromosome Mapping , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dyslipidemias/prevention & control , Animals , Dyslipidemias/genetics , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...