Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Genet Med ; 25(9): 100897, 2023 09.
Article in English | MEDLINE | ID: mdl-37191094

ABSTRACT

PURPOSE: Mendelian etiologies for acute encephalopathies in previously healthy children are poorly understood, with the exception of RAN binding protein 2 (RANBP2)-associated acute necrotizing encephalopathy subtype 1 (ANE1). We provide clinical, genetic, and neuroradiological evidence that biallelic variants in ribonuclease inhibitor (RNH1) confer susceptibility to a distinctive ANE subtype. METHODS: This study aimed to evaluate clinical data, neuroradiological studies, genomic sequencing, and protein immunoblotting results in 8 children from 4 families who experienced acute febrile encephalopathy. RESULTS: All 8 healthy children became acutely encephalopathic during a viral/febrile illness and received a variety of immune modulation treatments. Long-term outcomes varied from death to severe neurologic deficits to normal outcomes. The neuroradiological findings overlapped with ANE but had distinguishing features. All affected children had biallelic predicted damaging variants in RNH1: a subset that was studied had undetectable RNH1 protein. Incomplete penetrance of the RNH1 variants was evident in 1 family. CONCLUSION: Biallelic variants in RNH1 confer susceptibility to a subtype of ANE (ANE2) in previously healthy children. Intensive immunological treatments may alter outcomes. Genomic sequencing in children with unexplained acute febrile encephalopathy can detect underlying genetic etiologies, such as RNH1, and improve outcomes in the probands and at-risk siblings.


Subject(s)
Acute Febrile Encephalopathy , Brain Diseases , Leukoencephalitis, Acute Hemorrhagic , Child , Humans , Leukoencephalitis, Acute Hemorrhagic/diagnosis , Leukoencephalitis, Acute Hemorrhagic/genetics , Inflammasomes , Brain Diseases/genetics , Transcription Factors , Ribonucleases , Carrier Proteins
2.
J Child Neurol ; 38(1-2): 16-24, 2023 02.
Article in English | MEDLINE | ID: mdl-36628482

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy is a clinical phenomenon that often results from perinatal asphyxia. To mitigate secondary neurologic injury, prompt initial assessment and diagnosis is needed to identify patients eligible for therapeutic hypothermia. However, occasionally neonates present with a clinical picture of hypoxic-ischemic encephalopathy without significant risk factors for perinatal asphyxia. We hypothesized that in patients with genetic abnormalities, the clinical manifestation of those abnormalities may overlap with hypoxic-ischemic encephalopathy criteria, potentially contributing to a causal misattribution. We reviewed 210 charts of infants meeting local protocol criteria for moderate to severe hypoxic-ischemic encephalopathy in neonatal intensive care units in Calgary, Alberta. All patients that met criteria for therapeutic hypothermia were eligible for the study. Data were collected surrounding pregnancy and birth histories, as well as any available genetic or metabolic testing including microarray, gene panels, whole-exome sequencing, and newborn metabolic screens. Twenty-eight patients had genetic testing such as microarray, whole-exome sequencing, or a gene panel, because of clinical suspicion. Ten of 28 patients had genetic mutations, including CDKL5, pyruvate dehydrogenase, CFTR, CYP21A2, ISY1, KIF1A, KCNQ2, SCN9A, MTFMT, and NPHP1. All patients lacked significant risk factors to support a moderate to severe hypoxic-ischemic encephalopathy diagnosis. Treatment was changed in 2 patients because of confirmed genetic etiology. This study demonstrates the importance of identifying genetic comorbidities as potential contributors to a hypoxic-ischemic encephalopathy phenotype in neonates. Early identification of clinical factors that support an alternate diagnosis should be considered when the patient's clinical picture is not typical of hypoxic-ischemic encephalopathy and could aid in both treatment decisions and outcome prognostication.


Subject(s)
Asphyxia Neonatorum , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Pregnancy , Female , Infant, Newborn , Humans , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/genetics , Retrospective Studies , Genetic Predisposition to Disease/genetics , Asphyxia/complications , Asphyxia/therapy , Asphyxia Neonatorum/complications , Hypothermia, Induced/methods , Kinesins , NAV1.7 Voltage-Gated Sodium Channel , Steroid 21-Hydroxylase
3.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271778

ABSTRACT

The understanding of molecular biology in neurocritical care (NCC) is expanding rapidly and recognizing the important contribution of neuroinflammation, specifically changes in immunometabolism, towards pathological disease processes encountered across all illnesses in the NCC. Additionally, the importance of individualized inflammatory responses has been emphasized, acknowledging that not all individuals have the same mechanisms contributing towards their presentation. By understanding cellular processes that drive disease, we can make better personalized therapy decisions to improve patient outcomes. While the understanding of these cellular processes is evolving, the ability to measure such cellular responses at bedside to make acute care decisions is lacking. In this overview, we review cellular mechanisms involved in pathological neuroinflammation with a focus on immunometabolic dysfunction and review non-invasive bedside tools that have the potential to measure indirect and direct markers of shifts in cellular metabolism related to neuroinflammation. These tools include near-infrared spectroscopy, transcranial doppler, elastography, electroencephalography, magnetic resonance imaging and spectroscopy, and cytokine analysis. Additionally, we review the importance of genetic testing in providing information about unique metabolic profiles to guide individualized interpretation of bedside data. Together in tandem, these modalities have the potential to provide real time information and guide more informed treatment decisions.


Subject(s)
Child Care , Critical Care , Inflammation/diagnosis , Inflammation/therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Precision Medicine , Biomarkers , Child , Clinical Decision-Making , Cytokines/metabolism , Disease Management , Electroencephalography , Energy Metabolism , High-Throughput Nucleotide Sequencing , Humans , Immunity , Inflammation/etiology , Inflammation/metabolism , Monitoring, Physiologic/methods , Multimodal Imaging/methods , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Precision Medicine/methods
5.
Epilepsy Res ; 108(8): 1286-98, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25052708

ABSTRACT

PURPOSE: Patients with frontal lobe epilepsy (FLE) commonly demonstrate motor impairments, suggesting that frontal lobe seizures affect motor function. However, the underlying mechanisms of these deficits are not known, nor has any study systematically examined motor organization in these patients. We therefore examined cortical motor organization in a group of adult patients with FLE, using task-based fMRI. METHODS: Eleven right FLE patients, six left FLE patients, and ten control subjects underwent task-based fMRI. Two tasks were performed using the right and left hands separately, and both hands together. The first task was a finger-tapping task and the second task was a more complex coordination task. Functional MR data were compared between patient groups and controls. A laterality index of brain activation was also calculated between the epileptic and healthy hemisphere to determine hemispheric dominance during task performance to explore its relationship with a variety of patient-specific epilepsy factors. RESULTS: Overall, right FLE patients demonstrated decreased BOLD activity in the epileptic hemisphere and increased BOLD activity in the healthy hemisphere compared to controls (p<0.05). The comparison of left FLE patients to controls provided less conclusive differences, possibly due to the low number of left FLE patients studied. Laterality indices of the coordination task were positively correlated to the number of months since the last seizure in both patient groups (right FLE: rs=0.779, left FLE: rs=0.943). Patients that had experienced a recent seizure relied more on the sensorimotor cortex of the healthy hemisphere during task performance, compared to those that were relatively seizure free (p<0.05). SIGNIFICANCE: Patients with FLE exhibited changes in motor BOLD activity that was dependent on the duration of seizure freedom. These results demonstrate the presence of seizure-related alteration of cortical motor organization in FLE, which may underlie the motor deficits seen in these patients.


Subject(s)
Epilepsy, Frontal Lobe/physiopathology , Magnetic Resonance Imaging/methods , Motor Cortex/physiology , Psychomotor Performance/physiology , Seizures/physiopathology , Adolescent , Adult , Aged , Epilepsy, Frontal Lobe/diagnosis , Female , Humans , Male , Middle Aged , Photic Stimulation/methods , Seizures/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL