Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38786882

ABSTRACT

Starvation is a complex physiological state that induces changes in protein expression to ensure survival. The insect midgut is sensitive to changes in dietary content as it is at the forefront of communicating information about incoming nutrients to the body via hormones. Therefore, a DIA proteomics approach was used to examine starvation physiology and, specifically, the role of midgut neuropeptide hormones in a representative lepidopteran, Manduca sexta. Proteomes were generated from midguts of M. sexta fourth-instar caterpillars, starved for 24 h and 48 h, and compared to fed controls. A total of 3047 proteins were identified, and 854 of these were significantly different in abundance. KEGG analysis revealed that metabolism pathways were less abundant in starved caterpillars, but oxidative phosphorylation proteins were more abundant. In addition, six neuropeptides or related signaling cascade proteins were detected. Particularly, neuropeptide F1 (NPF1) was significantly higher in abundance in starved larvae. A change in juvenile hormone-degrading enzymes was also detected during starvation. Overall, our results provide an exploration of the midgut response to starvation in M. sexta and validate DIA proteomics as a useful tool for quantifying insect midgut neuropeptide hormones.

2.
Cell Signal ; 110: 110815, 2023 10.
Article in English | MEDLINE | ID: mdl-37478958

ABSTRACT

Skeletal muscle atrophy is defined by wasting or decrease in muscle mass owing to injury, aging, malnutrition, chronic disuse, or physical consequences of chronic illness. Under normal physiological conditions, a network of signal transduction pathways serves to balance muscle protein synthesis and proteolysis; however, metabolic shifts occur from protein synthesis to protein degradation that leads to a reduction in cross-sectional myofibers and can result in loss of skeletal muscle mass (atrophy) over time. Recent evidence highlights posttranslational modifications (PTMs) such as acetylation and phosphorylation in contractile dysfunction and muscle wasting. Indeed, histone deacetylase (HDAC) inhibitors have been shown to attenuate muscle atrophy and delay muscle damage in response to nutrient deprivation, in models of metabolic dysfunction and genetic models of muscle disease (e.g., muscle dystrophy). Despite our current understanding of lysine acetylation in muscle physiology, a role for HDACs in the regulation of muscle signal transduction remains a 'black box.' Using C2C12 myotubes stimulated with dexamethasone (Dex) as a model of muscle atrophy, we report that protein kinase C delta (PKCδ) phosphorylation decreased at threonine 505 (T505) and serine 643 (S643) in myotubes in response to muscle atrophy; these residues are important for PKCδ activity. Interestingly, PKCδ phosphorylation was restored/increased in myotubes treated with a pan-HDAC inhibitor or a class I selective HDAC inhibitor targeting HDACs1, -2, and - 3 in response to Dex. Moreover, we observed that Dex induced atrophy in skeletal muscle tissue in mice; this reduction in atrophy occurred rapidly, with weight loss noted by day 3 post-Dex and muscle weight loss noted by day 7. Similar to our findings in C2C12 myotubes, Dex attenuated phosphorylation of PKCδ at S643, while HDAC inhibition restored or increased PKCδ phosphorylation at both T505 and S643 in the tibialis anterior. Consistent with this hypothesis, we report that HDAC inhibition could not restore myotube size in response to Dex in the presence of a PKCδ inhibitor or when overexpressing a dominant negative PKCδ. Additionally, the overexpression of a constitutively active PKCδ prevented Dex-induced myotube atrophy. Combined, these data suggest that HDACs regulate muscle physiology via changes in intracellular signaling, namely PKCδ phosphorylation. Whether HDACs regulate PKCδ through canonical (e.g. gene-mediated regulation of phosphatases) or non-canonical (e.g. direct deacetylation of PKCδ to change phosphorylation states) mechanisms remain unclear and future research is needed to clarify this point.


Subject(s)
Histone Deacetylase Inhibitors , Protein Kinase C-delta , Mice , Animals , Histone Deacetylase Inhibitors/pharmacology , Phosphorylation , Protein Kinase C-delta/metabolism , Cross-Sectional Studies , Muscular Atrophy/metabolism , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Dexamethasone/adverse effects , Dexamethasone/metabolism , Weight Loss
3.
Cell Rep ; 40(10): 111279, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36070701

ABSTRACT

Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFµg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFµg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFµg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFµg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFµg brains, with pronounced phenotypes in SFµg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.


Subject(s)
Gravity, Altered , Space Flight , Weightlessness , Animals , Drosophila/genetics , Drosophila melanogaster , Weightlessness/adverse effects
4.
Cell Res ; 30(3): 211-228, 2020 03.
Article in English | MEDLINE | ID: mdl-32047269

ABSTRACT

The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m6A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m6A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m6A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m6A-modified start codons in junction sequences.


Subject(s)
Adenosine/analogs & derivatives , Open Reading Frames , RNA, Circular/metabolism , Spermatocytes/metabolism , Spermatogenesis , Adenosine/metabolism , Adult , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Spermatocytes/cytology , Young Adult
5.
SLAS Discov ; 25(3): 277-286, 2020 03.
Article in English | MEDLINE | ID: mdl-31556780

ABSTRACT

Mass spectrometry-based phosphoproteomics holds promise for advancing drug treatment and disease diagnosis; however, its clinical translation has thus far been limited. This is in part due to an unstandardized and segmented sample preparation process that involves cell lysis, protein digestion, peptide desalting, and phosphopeptide enrichment. Automating this entire sample preparation process will be key in facilitating standardization and clinical translation of phosphoproteomics. While peptide desalting and phosphopeptide enrichment steps have been individually automated, integrating these two extractions and, further, the entire process requires more advanced robotic platforms as well as automation-friendly extraction tools. Here we describe a fully automated peptide desalting and phosphopeptide enrichment method using IMCStips on a Hamilton STAR. Using our established automated method, we identified more than 10,000 phosphopeptides from 200 µg of HCT116 cell lysate without fractionation with >85% phosphopeptide specificities. Compared with titania-based Spin Tip products, the automated IMCStips-based method gave 50% higher phosphopeptide identifications. The method reproducibility was further assessed using multiple reaction monitoring (MRM) to show >50% phosphopeptide recoveries after the automated phosphopeptide extraction with coefficients of variation (CVs) of <20% over a 3-week period. The established automated method is a step toward standardization of the sample preparation of phosphopeptide samples and could be further expanded upon to create a fully automated "cells to phosphopeptides" method.


Subject(s)
Mass Spectrometry/methods , Phosphopeptides/isolation & purification , Proteomics/methods , Robotics/methods , Automation/methods , HCT116 Cells , Humans , Phosphopeptides/genetics , Phosphorylation/drug effects
6.
Biosci Rep ; 38(5)2018 10 31.
Article in English | MEDLINE | ID: mdl-30061171

ABSTRACT

Lysine residues undergo diverse and reversible post-translational modifications (PTMs). Lysine acetylation has traditionally been studied in the epigenetic regulation of nucleosomal histones that provides an important mechanism for regulating gene expression. Histone acetylation plays a key role in cardiac remodeling and function. However, recent studies have shown that thousands of proteins can be acetylated at multiple acetylation sites, suggesting the acetylome rivals the kinome as a PTM. Based on this, we examined the impact of obesity on protein lysine acetylation in the left ventricle (LV) of male c57BL/6J mice. We reported that obesity significantly increased heart enlargement and fibrosis. Moreover, immunoblot analysis demonstrated that lysine acetylation was markedly altered with obesity and that this phenomenon was cardiac tissue specific. Mass spectral analysis identified 2515 proteins, of which 65 were significantly impacted by obesity. Ingenuity Pathway Analysis® (IPA) further demonstrated that these proteins were involved in metabolic dysfunction and cardiac remodeling. In addition to total protein, 189 proteins were acetylated, 14 of which were significantly impacted by obesity. IPA identified the Cardiovascular Disease Pathway as significantly regulated by obesity. This network included aconitate hydratase 2 (ACO2), and dihydrolipoyl dehydrogenase (DLD), in which acetylation was significantly increased by obesity. These proteins are known to regulate cardiac function yet, the impact for ACO2 and DLD acetylation remains unclear. Combined, these findings suggest a critical role for cardiac acetylation in obesity-mediated remodeling; this has the potential to elucidate novel targets that regulate cardiac pathology.


Subject(s)
Heart Ventricles/metabolism , Obesity/metabolism , Proteins/metabolism , Tandem Mass Spectrometry/methods , Animals , Diet, High-Fat/adverse effects , Lysine/metabolism , Male , Mice, Inbred C57BL , Obesity/etiology , Obesity/physiopathology , Protein Processing, Post-Translational , Proteins/genetics , Proteome/analysis , Proteome/metabolism , Ventricular Remodeling
7.
J Exp Biol ; 221(Pt 15)2018 08 13.
Article in English | MEDLINE | ID: mdl-29895681

ABSTRACT

Studies in temperate fishes provide evidence that cardiac mitochondrial function and the capacity to fuel cardiac work contribute to thermal tolerance. Here, we tested the hypothesis that decreased cardiac aerobic metabolic capacity contributes to the lower thermal tolerance of the haemoglobinless Antarctic icefish, Chaenocephalus aceratus, compared with that of the red-blooded Antarctic species, Notothenia coriiceps. Maximal activities of citrate synthase (CS) and lactate dehydrogenase (LDH), respiration rates of isolated mitochondria, adenylate levels and changes in mitochondrial protein expression were quantified from hearts of animals held at ambient temperature or exposed to their critical thermal maximum (CTmax). Compared with C. aceratus, activity of CS, ATP concentration and energy charge were higher in hearts of N. coriiceps at ambient temperature and CTmax While state 3 mitochondrial respiration rates were not impaired by exposure to CTmax in either species, state 4 rates, indicative of proton leakage, increased following exposure to CTmax in C. aceratus but not N. coriiceps The interactive effect of temperature and species resulted in an increase in antioxidants and aerobic metabolic enzymes in N. coriiceps but not in C. aceratus Together, our results support the hypothesis that the lower aerobic metabolic capacity of C. aceratus hearts contributes to its low thermal tolerance.


Subject(s)
Hot Temperature , Mitochondria, Heart/metabolism , Perciformes/metabolism , Adenosine Triphosphate/metabolism , Animals , Antarctic Regions , Citrate (si)-Synthase/metabolism , L-Lactate Dehydrogenase/metabolism , Myocardium/enzymology , Myocardium/metabolism
8.
Nat Cell Biol ; 20(5): 535-540, 2018 05.
Article in English | MEDLINE | ID: mdl-29695786

ABSTRACT

The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress2,3 and metabolic disorders4-6. How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m5C, m2G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m5C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Glucose Metabolism Disorders/enzymology , Glucose Metabolism Disorders/genetics , Paternal Inheritance , RNA, Small Untranslated/genetics , Spermatozoa/enzymology , Animals , Biomarkers/blood , Blood Glucose/metabolism , DNA (Cytosine-5-)-Methyltransferases/deficiency , DNA (Cytosine-5-)-Methyltransferases/genetics , Diet, High-Fat , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gene-Environment Interaction , Genetic Predisposition to Disease , Glucose Metabolism Disorders/blood , Glucose Metabolism Disorders/diagnosis , Heredity , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Nucleic Acid Conformation , Phenotype , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism , Structure-Activity Relationship , Transcriptome
9.
Viruses ; 7(6): 3019-34, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26075507

ABSTRACT

Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Many enzymes are added to animal feed during production and are subjected to high-heat stress during feed processing. To produce a thermostabile endolysin for treating poultry, an E. coli codon-optimized gene was synthesized that fused the N-acetylmuramoyl-L-alanine amidase domain from the endolysin of the thermophilic bacteriophage ɸGVE2 to the cell-wall binding domain (CWB) from the endolysin of the C. perfringens-specific bacteriophage ɸCP26F. The resulting protein, PlyGVE2CpCWB, lysed C. perfringens in liquid and solid cultures. PlyGVE2CpCWB was most active at pH 8, had peak activity at 10 mM NaCl, 40% activity at 150 mM NaCl and was still 16% active at 600 mM NaCl. The protein was able to withstand temperatures up to 50° C and still lyse C. perfringens. Herein, we report the construction and characterization of a thermostable chimeric endolysin that could potentially be utilized as a feed additive to control the bacterium during poultry production.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacteriolysis , Cell Wall/drug effects , Clostridium perfringens/drug effects , Endopeptidases/chemistry , Endopeptidases/metabolism , Animals , Bacteriophages/enzymology , Bacteriophages/genetics , Chickens , Endopeptidases/genetics , Enzyme Activators/metabolism , Enzyme Stability , Escherichia coli/genetics , Food Industry/methods , Food Safety , Gene Expression , Humans , Hydrogen-Ion Concentration , Protein Binding , Protein Stability , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sodium Chloride/metabolism , Temperature
10.
PLoS One ; 7(5): e38283, 2012.
Article in English | MEDLINE | ID: mdl-22666499

ABSTRACT

Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.


Subject(s)
Clostridium perfringens/virology , Podoviridae/classification , Podoviridae/pathogenicity , Base Sequence , Genome, Viral/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , Podoviridae/genetics , Viral Nonstructural Proteins/genetics , Viral Structural Proteins/genetics , Virion/metabolism , Virulence
11.
Phytochemistry ; 79: 46-56, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22609069

ABSTRACT

Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer.


Subject(s)
Plant Proteins/metabolism , Rubber/metabolism , Taraxacum/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Taraxacum/genetics , Time Factors
12.
Mol Pharmacol ; 81(2): 143-53, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22027755

ABSTRACT

The molecular mechanisms involved in uterine quiescence during gestation and those responsible for induction of labor are not completely known. Nitric oxide relaxes uterine smooth muscle in a manner disparate from that for other smooth muscles because global elevation of cGMP after activation of soluble guanylyl cyclase does not relax the muscle. S-Nitrosylation, the covalent addition of an nitric oxide (NO) group to a cysteine thiol is a likely mechanism to explain the ability of NO to relax myometrium. This work is the first to describe the myometrial S-nitrosylproteome in both pregnant and nonpregnant tissue states. Using the guinea pig model, we show that specific sets of proteins involved in contraction and relaxation are S-nitrosylated in laboring and nonlaboring muscle and that many of these proteins are uniquely S-nitrosylated in only one state of the tissue. In particular, we show that S-nitrosylation of the intermediate filament protein desmin is significantly increased (5.7-fold, p < 0.005) in pregnancy and that this increase cannot be attributed solely to the increase in protein expression (1.8-fold, p < 0.005) that accompanies pregnancy. Elucidation of the myometrial S-nitrosylproteome provides a list of mechanistically important proteins that can constitute the basis of hypotheses formed to explain the regulation of uterine contraction/relaxation.


Subject(s)
Muscle, Smooth/chemistry , Myometrium/chemistry , Proteome/analysis , Animals , Female , Guinea Pigs , Humans , Muscle Contraction , Nitrogen Oxides , Pregnancy , Protein Processing, Post-Translational , Uterine Contraction
13.
Arch Virol ; 156(1): 25-35, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20963614

ABSTRACT

Poultry intestinal material, sewage and poultry processing drainage water were screened for virulent Clostridium perfringens bacteriophages. Viruses isolated from broiler chicken offal washes (O) and poultry feces (F), designated ΦCP39O and ΦCP26F, respectively, produced clear plaques on host strains. Both bacteriophages had isometric heads of 57 nm in diameter with 100-nm non-contractile tails characteristic of members of the family Siphoviridae in the order Caudovirales. The double-strand DNA genome of bacteriophage ΦCP39O was 38,753 base pairs (bp), while the ΦCP26F genome was 39,188 bp, with an average GC content of 30.3%. Both viral genomes contained 62 potential open reading frames (ORFs) predicted to be encoded on one strand. Among the ORFs, 29 predicted proteins had no known similarity while others encoded putative bacteriophage capsid components such as a pre-neck/appendage, tail, tape measure and portal proteins. Other genes encoded a predicted DNA primase, single-strand DNA-binding protein, terminase, thymidylate synthase and a transcription factor. Potential lytic enzymes such as a fibronectin-binding autolysin, an amidase/hydrolase and a holin were encoded in the viral genomes. Several ORFs encoded proteins that gave BLASTP matches with proteins from Clostridium spp. and other Gram-positive bacterial and bacteriophage genomes as well as unknown putative Collinsella aerofaciens proteins. Proteomics analysis of the purified viruses resulted in the identification of the putative pre-neck/appendage protein and a minor structural protein encoded by large open reading frames. Variants of the portal protein were identified, and several mycobacteriophage gp6-like protein variants were detected in large amounts relative to other virion proteins. The predicted amino acid sequences of the pre-neck/appendage proteins had major differences in the central portion of the protein between the two phage gene products. Based on phylogenetic analysis of the large terminase protein, these phages are predicted to be pac-type, using a head-full DNA packaging strategy.


Subject(s)
Bacteriophages/genetics , Clostridium perfringens/virology , Gene Expression Regulation, Viral/physiology , Genome, Viral , Base Sequence , Cloning, Molecular , DNA, Viral/genetics , Phylogeny , Proteomics , Viral Proteins/genetics , Viral Proteins/metabolism
14.
Proteomics ; 9(11): 2967-85, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19452453

ABSTRACT

In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.


Subject(s)
14-3-3 Proteins/chemistry , Arabidopsis Proteins/chemistry , Proteomics/methods , Recombinant Fusion Proteins/chemistry , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Amino Acid Motifs , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Consensus Sequence , Electrophoresis, Gel, Two-Dimensional , Escherichia coli/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Binding , Protein Interaction Mapping/methods , Protein Isoforms , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Tandem Mass Spectrometry
15.
J Proteome Res ; 6(12): 4582-91, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17973442

ABSTRACT

Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain unclear. Determining colonization-associated factors at the proteome level should facilitate our understanding of Campylobacter spp. contamination of poultry. Therefore, proteomic analyses were utilized to identify expression differences between two Campylobacter jejuni isolates, a robust colonizer A74/C and a poor colonizing strain of the chicken gastrointestinal system designated NCTC 11168-PMSRU. Proteomic analyses by two-dimensional gel electrophoresis revealed the specific expression of an outer membrane-fibronectin binding protein, serine protease, and a putative aminopeptidase in the soluble portion of the robust colonizer A74C. Several proteins including a cysteine synthase and aconitate hydratase were detected specifically in the poor colonizer C. jejuni NCTC 11168-PMSRU isolate. Variation in the amino acid sequences resulting in different isoelectric points and relative mobility of the flagellin and C. jejuni major outer membrane (MOMP) protein were also detected between the two isolates. Western blotting of the bacterial proteins revealed the presence of two flagellin proteins in the poor colonizer versus one in the robust colonizing isolate, but no differences in MOMP. The results demonstrated that proteomics is useful for characterizing phenotypic variation among Campylobacter spp. isolates. Interestingly, different gene products potentially involved in robust colonization of chickens by Campylobacter spp. appear to conform to recently identified expression patterns in Biofilm or agar-adapted isolates.


Subject(s)
Campylobacter Infections/metabolism , Campylobacter jejuni/growth & development , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Gastroenteritis/metabolism , Proteomics , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/ultrastructure , Campylobacter Infections/microbiology , Campylobacter jejuni/ultrastructure , Electrophoresis, Gel, Two-Dimensional , Flagellin/genetics , Flagellin/ultrastructure , Gastroenteritis/microbiology , Molecular Sequence Data , Porins/genetics , Porins/ultrastructure
16.
J Exp Bot ; 58(7): 1873-92, 2007.
Article in English | MEDLINE | ID: mdl-17443017

ABSTRACT

The impact of water deficit and salt stress on two important wine grape cultivars, Chardonnay and Cabernet Sauvignon, was investigated. Plants were exposed to increasing salinity and water deficit stress over a 16 d time period. Measurements of stem water potentials, and shoot and leaf lengths indicated that Chardonnay was more tolerant to these stresses than Cabernet Sauvignon. Shoot tips were harvested every 8 d for proteomic analysis using a trichloroacetic acid/acetone extraction protocol and two-dimensional gel electrophoresis. Proteins were stained with Coomassie Brilliant Blue, quantified, and then 191 unique proteins were identified using matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry. Peptide sequences were matched against both the NCBI nr and TIGR Vitis expressed sequence tag (EST) databases that had been implemented with all public Vitis sequences. Approximately 44% of the protein isoforms could be identified. Analysis of variance indicated that varietal difference was the main source of protein expression variation (40%). In stressed plants, reduction of the amount of proteins involved with photosynthesis, protein synthesis, and protein destination was correlated with the inhibition of shoot elongation. Many of the proteins up-regulated in Chardonnay were of unclassified or of unknown function, whereas proteins specifically up-regulated in Cabernet Sauvignon were involved in protein metabolism.


Subject(s)
Plant Proteins/metabolism , Proteomics , Vitis/metabolism , Water/metabolism , Electrophoresis, Gel, Two-Dimensional , Expressed Sequence Tags , Gene Expression Profiling , Plant Proteins/classification , Plant Shoots/metabolism , Protein Isoforms/classification , Protein Isoforms/metabolism , Proteome , Sodium Chloride/pharmacology , Vitis/drug effects , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...