Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(2): e2021GL096009, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35865332

ABSTRACT

Top-down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector-based 4D-Var framework based on the GEOS-Chem adjoint model to address the impacts of co-emissions and chemical interactions on top-down emission estimates. We apply OMI NO2, OMI SO2, and MOPITT CO observations to estimate NO x , SO2, and CO emissions in East Asia during 2005-2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO2)-15% (SO2) and normalized mean square error (NMSE) by 8% (SO2)-9% (NO2) compared to a species-based inversion. This new inversion captures the peak years of Chinese SO2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO2 trends mostly to energy and CO trend to residential emissions.

2.
Nat Commun ; 13(1): 2043, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440561

ABSTRACT

Rising emissions from wildfires over recent decades in the Pacific Northwest are known to counteract the reductions in human-produced aerosol pollution over North America. Since amplified Pacific Northwest wildfires are predicted under accelerating climate change, it is essential to understand both local and transported contributions to air pollution in North America. Here, we find corresponding increases for carbon monoxide emitted from the Pacific Northwest wildfires and observe significant impacts on both local and down-wind air pollution. Between 2002 and 2018, the Pacific Northwest atmospheric carbon monoxide abundance increased in August, while other months showed decreasing carbon monoxide, so modifying the seasonal pattern. These seasonal pattern changes extend over large regions of North America, to the Central USA and Northeast North America regions, indicating that transported wildfire pollution could potentially impact the health of millions of people.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , Carbon Monoxide , Humans , North America , Seasons
3.
Atmos Chem Phys ; 20(23): 14617-14647, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33414818

ABSTRACT

Global coupled chemistry-climate models underestimate carbon monoxide (CO) in the Northern Hemisphere, exhibiting a pervasive negative bias against measurements peaking in late winter and early spring. While this bias has been commonly attributed to underestimation of direct anthropogenic and biomass burning emissions, chemical production and loss via OH reaction from emissions of anthropogenic and biogenic volatile organic compounds (VOCs) play an important role. Here we investigate the reasons for this underestimation using aircraft measurements taken in May and June 2016 from the Korea-United States Air Quality (KORUS-AQ) experiment in South Korea and the Air Chemistry Research in Asia (ARIAs) in the North China Plain (NCP). For reference, multispectral CO retrievals (V8J) from the Measurements of Pollution in the Troposphere (MOPITT) are jointly assimilated with meteorological observations using an ensemble adjustment Kalman filter (EAKF) within the global Community Atmosphere Model with Chemistry (CAM-Chem) and the Data Assimilation Research Testbed (DART). With regard to KORUS-AQ data, CO is underestimated by 42% in the control run and by 12% with the MOPITT assimilation run. The inversion suggests an underestimation of anthropogenic CO sources in many regions, by up to 80% for northern China, with large increments over the Liaoning Province and the North China Plain (NCP). Yet, an often-overlooked aspect of these inversions is that correcting the underestimation in anthropogenic CO emissions also improves the comparison with observational O3 datasets and observationally constrained box model simulations of OH and HO2. Running a CAM-Chem simulation with the updated emissions of anthropogenic CO reduces the bias by 29% for CO, 18% for ozone, 11% for HO2, and 27% for OH. Longer-lived anthropogenic VOCs whose model errors are correlated with CO are also improved, while short-lived VOCs, including formaldehyde, are difficult to constrain solely by assimilating satellite retrievals of CO. During an anticyclonic episode, better simulation of O3, with an average underestimation of 5.5 ppbv, and a reduction in the bias of surface formaldehyde and oxygenated VOCs can be achieved by separately increasing by a factor of 2 the modeled biogenic emissions for the plant functional types found in Korea. Results also suggest that controlling VOC and CO emissions, in addition to widespread NO x controls, can improve ozone pollution over East Asia.

4.
Nat Commun ; 8(1): 2227, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29263323

ABSTRACT

Several viable but conflicting explanations have been proposed to explain the recent ~8 p.p.b. per year increase in atmospheric methane after 2006, equivalent to net emissions increase of ~25 Tg CH4 per year. A concurrent increase in atmospheric ethane implicates a fossil source; a concurrent decrease in the heavy isotope content of methane points toward a biogenic source, while other studies propose a decrease in the chemical sink (OH). Here we show that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH4 per year from the 2001-2007 to the 2008-2014 time periods using satellite measurements of CO and CH4, nearly twice the decrease expected from prior estimates. After updating both the total and isotopic budgets for atmospheric methane with these revised biomass burning emissions (and assuming no change to the chemical sink), we find that fossil fuels contribute between 12-19 Tg CH4 per year to the recent atmospheric methane increase, thus reconciling the isotopic- and ethane-based results.

5.
Proc Natl Acad Sci U S A ; 113(33): 9204-9, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27482096

ABSTRACT

The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for 2 mo. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have nonlinear sensitivity to dry conditions during prolonged periods with less than 4 mm/d of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will reoccur during future droughts, usually associated with El Niño events.


Subject(s)
Air Pollution , Droughts , El Nino-Southern Oscillation , Fires , Smoke , Carbon Monoxide/analysis , Indonesia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...