Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 14(1): 192, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011402

ABSTRACT

OBJECTIVE: MG-63 cells that have osteoblastic and adipogenic differentiation potential were evaluated for internalization, and adipogenic differentiation in the presence and absence of the covalently functionalized aryl gold nanoparticles (AuNPs-C6H4-4-COOH). RESULTS: Inductively coupled plasma, flow cytometry and confocal microscopy analyses confirmed that gold nanoparticles were easily internalized by MG-63 cells. The MG-63 cells were differentiated into adipocytes without gold-aryl nanoparticles and with the gold-aryl nanoparticles at 5 µM concentration in both induction and maintenance media. The lipid content assay and the relative expressions of PPAR-γ, ADR1, GLUT1 and GLUT4 genes showed no significant variation with and without the gold nanoparticles treatment. Differential phosphorylation levels of 43 kinases phosphorylation sites were evaluated using the human phospho-kinase array to assess the effect of the gold nanoparticles on the signaling pathways during the differentiation. No kinase phosphorylation site was differentially phosphorylated with two or more folds after the nanoparticles treatment after the first day as well as at the end of MG-63 cells differentiation. The gold-aryl nanoparticles do not affect MG-63 cells differentiation into adipocytes neither do they affect any key signaling pathway. These properties make these gold nanoparticles suitable for future drug delivery and medical applications.


Subject(s)
Gold , Metal Nanoparticles , Adipogenesis , Cell Differentiation , Humans , PPAR gamma , Signal Transduction
2.
Biomater Sci ; 7(12): 5016-5026, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31620700

ABSTRACT

The dissemination of multi-drug resistant (MDR) superbugs in hospital environments, communities and food animals and the very dynamic bacterial mutation frequency require the development of prolonged therapeutic strategies to gain mastery over antibiotic resistance. A AuNP-lysozyme nanoantibacterial was fabricated by the conjugation of AuNPs-C6H4-4-COOH with lysozyme via green reduction of aryldiazonium gold(iii) salt [HOOC-4-C6H4N[triple bond, length as m-dash]N]AuCl4. Results from molecular docking calculations aimed at revealing the binding mode of benzoic acid with the lysozyme structure clearly showed the lowest energy conformation with benzoic acid bound in the deep buried hydrophobic cavity of the protein active site through strong hydrogen bonding and hydrophobic interactions, thus validating the experimental outcomes of the current study which also exhibited the binding of -COOH functional groups in the interior of the protein structure. The superiority of the lysozyme bioconjugate against superbugs was demonstrated by the enhanced and broadened lysozyme antibacterial activities of 98-99% against extended spectrum beta lactamase (ESBL) producing Escherichia coli and imipenem-resistant Pseudomonas aeruginosa clinical isolates and a selection of Gram-negative and Gram-positive standard ATCC strains. Selective toxicity against bacteria was confirmed by the high viability of HeLa and fibroblast cell lines and the outstanding hemocompatibility at the minimum bacterial inhibitory concentrations (MICs). Turbidimetric enzyme kinetic assay showed the enhancement of the lysozyme hydrolytic activity by gold nanoparticles on the Micrococcus lysodeikticus bacterial substrate. Using gel electrophoresis, the induced cell wall breakdown was confirmed by detecting the leaked-out bacterial genomic DNA. The integrity and morphology changes of the E. coli bacteria were investigated using a scanning electron microscope after one hour of contact with the lysozyme-gold bioconjugate. The antibacterial functionalities showed little or no damage to healthy human cells and can be applied to wound dressings and medical devices.


Subject(s)
Drug Resistance, Multiple/drug effects , Gold/chemistry , Metal Nanoparticles/chemistry , Muramidase/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Benzoic Acid/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Resistance, Bacterial/drug effects , Green Chemistry Technology , Hydrolysis , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...