Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Cancers (Basel) ; 13(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803354

ABSTRACT

Chemoresistance is a major hallmark driving the progression and poor prognosis of hepatocellular carcinoma (HCC). Limited chemoresponse of HCC was demonstrated to be mediated by mitogen-activated protein kinase 14 (MAPK14) and activating transcription factor 2 (ATF2). Recently, we have demonstrated loss of control of RAS-RAF-ERK-signaling as a consequence of miR-622 downregulation in HCC. However, the majority of target genes of this potent tumorsuppressive microRNA had remained elusive. The MAPK14-ATF2-axis represents a collateral pathway ensuring persisting ERK-activation in the presence of sorafenib-mediated RAF-inhibition. In contrast to the function of the MAPK14-ATF2-axis, both the expression and regulation of MAPK14 and ATF2 in human HCC remained to be clarified. We found combined overexpression of MAPK14 and ATF2 in human HCC cells, tissues and in sorafenib resistant cell lines. High expression of MAPK14 and ATF2 was associated with reduced overall survival in HCC patients. Deciphering the molecular mechanism promoting combined upregulation of MAPK14 and ATF2 in HCC, we revealed that miR-622 directly targets both genes, resulting in combined de-repression of the MAPK14-ATF2-axis. Together, miR-622 represents a superior regulator of both RAS-RAF-ERK as well as MAPK14-ATF2-signaling pathways in liver cancer.

2.
Neoplasia ; 23(5): 502-514, 2021 05.
Article in English | MEDLINE | ID: mdl-33901943

ABSTRACT

The poor prognosis of advanced hepatocellular carcinoma (HCC) is driven by diverse features including dysregulated microRNAs inducing drug resistance and stemness. Lin-28 homolog A (LIN28A) and its partner zinc finger CCHC-type containing 11 (ZCCHC11) cooperate in binding, oligouridylation and subsequent degradation of tumorsuppressive let-7 precursor microRNAs. Functionally, activation of LIN28A was recently shown to promote stemness and chemoresistance in HCC. However, the expression and regulation of LIN28A in HCC had been unclear. Moreover, the expression, regulation and function of ZCCHC11 in liver cancer remained elusive. In contrast to "one-microRNA-one-target" interactions, we identified common binding sites for miR-622 in both LIN28A and ZCCHC11, suggesting miR-622 to function as a superior pathway regulator. Applying comprehensive microRNA database screening, human hepatocytes and HCC cell lines, patient-derived tissue samples as well as "The Cancer Genome Atlas" (TCGA) patient cohorts, we demonstrated that loss of tumorsuppressive miR-622 mediates derepression and overexpression of LIN28A in HCC. Moreover, the cooperator of LIN28A, ZCCHC11, was newly identified as a prognostic and therapeutic target of miR-622 in liver cancer. Together, identification of novel miR-622 target genes revealed common regulation of cooperating genes and outlines the previously unknown oncogenic role of ZCCHC11 in liver cancer.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , RNA Interference , Binding Sites , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/metabolism , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Oncogenes
3.
J Clin Invest ; 130(5): 2509-2526, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31999643

ABSTRACT

Hepatocellular carcinoma (HCC) is clearly age-related and represents one of the deadliest cancer types worldwide. As a result of globally increasing risk factors including metabolic disorders, the incidence rates of HCC are still rising. However, the molecular hallmarks of HCC remain poorly understood. Neuropeptide Y (NPY) and NPY receptors represent a highly conserved, stress-activated system involved in diverse cancer-related hallmarks including aging and metabolic alterations, but its impact on liver cancer had been unclear. Here, we observed increased expression of NPY5 receptor (Y5R) in HCC, which correlated with tumor growth and survival. Furthermore, we found that its ligand NPY was secreted by peritumorous hepatocytes. Hepatocyte-derived NPY promoted HCC progression by Y5R activation. TGF-ß1 was identified as a regulator of NPY in hepatocytes and induced Y5R in invasive cancer cells. Moreover, NPY conversion by dipeptidylpeptidase 4 (DPP4) augmented Y5R activation and function in liver cancer. The TGF-ß/NPY/Y5R axis and DPP4 represent attractive therapeutic targets for controlling liver cancer progression.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Neoplasm Proteins/metabolism , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Signal Transduction , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/genetics , Male , Mice , Neoplasm Proteins/genetics , Neuropeptide Y/genetics , Receptors, Neuropeptide Y/genetics
4.
Neoplasia ; 21(3): 257-268, 2019 03.
Article in English | MEDLINE | ID: mdl-30685691

ABSTRACT

Inhibition of the RAS-RAF-ERK-pathway using sorafenib as a first-line and regorafenib as a second-line treatment approach is the only effective therapeutic strategy for advanced hepatocellular carcinoma (HCC). Recent studies suggest that wild-type KRAS and HRAS isoforms could majorly contribute to HCC progression and sorafenib resistance. In contrast, the role of neuroblastoma RAS viral oncogene homolog (NRAS) in HCC remained elusive. In this study, wild-type NRAS was found to be overexpressed in HCC cell lines, preclinical HCC models, and human HCC tissues. Moreover, NRAS overexpression correlated with poor survival and proliferation in vivo. However, si-RNA-pool-mediated NRAS knockdown showed only slight effects on HCC proliferation, clonogenicity, and AKT activity. We determined that KRAS upregulation served as a functional compensatory mechanism in the absence of NRAS, which was overcome by combined inhibition of NRAS and KRAS in HCC cells. Furthermore, NRAS expression was elevated in sorafenib-resistant compared to nonresistant HCC cells, and NRAS knockdown enhanced sorafenib efficacy in resistant cells. In summary, NRAS appears to be a prognostic marker in HCC and contributes to sorafenib resistance. Regarding potential therapeutic strategies, NRAS inhibition in HCC should be combined with KRAS inhibition to prevent KRAS-mediated rescue effects.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Drug Resistance, Neoplasm/genetics , GTP Phosphohydrolases/genetics , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Membrane Proteins/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Male , Membrane Proteins/metabolism , Middle Aged , Prognosis
5.
Arthritis Rheumatol ; 69(6): 1233-1245, 2017 06.
Article in English | MEDLINE | ID: mdl-28086000

ABSTRACT

OBJECTIVE: Cartilage damage and subchondral bone changes are closely connected in osteoarthritis. Nevertheless, how these processes are interlinked is, to date, incompletely understood. This study was undertaken to investigate the mechanistic role of a cartilage-derived protein, upper zone of growth plate and cartilage matrix-associated protein (UCMA), in osteoarthritis-related cartilage and bone changes. METHODS: UCMA expression was assessed in healthy and osteoarthritic human and mouse cartilage. For analysis of cartilage and bone changes, osteoarthritis was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) and Ucma-deficient mice. UCMA-collagen interactions, the effect of UCMA on aggrecanase activity, and the impact of recombinant UCMA on osteoclast differentiation were studied in vitro. RESULTS: UCMA was found to be overexpressed in human and mouse osteoarthritic cartilage. DMM-triggered cartilage changes, including increased structural damage, proteoglycan loss, and chondrocyte cell death, were aggravated in Ucma-deficient mice compared to WT littermates, thereby demonstrating the potential chondroprotective effects of UCMA. Moreover, UCMA inhibited ADAMTS-dependent aggrecanase activity and directly interacted with cartilage-specific collagen types. In contrast, osteoarthritis-related bone changes were significantly reduced in Ucma-deficient mice, showing less pronounced osteophyte formation and subchondral bone sclerosis. Mechanistically, UCMA directly promoted osteoclast differentiation in vitro. CONCLUSION: UCMA appears to link cartilage with bone changes in osteoarthritis by supporting cartilage integrity as an endogenous inhibitor of aggrecanases while also promoting osteoclastogenesis and subchondral bone turnover. Thus, UCMA represents an important link between cartilage and bone in osteoarthritis.


Subject(s)
Bone Remodeling/physiology , Cartilage, Articular/physiopathology , Growth Plate/metabolism , Matrilin Proteins/metabolism , Osteoarthritis/physiopathology , Animals , Cartilage, Articular/pathology , Case-Control Studies , Chondrocytes/metabolism , Endopeptidases/metabolism , Humans , Mice , Osteoarthritis/pathology , Osteoclasts/metabolism , Osteoclasts/pathology , Osteogenesis/physiology , Proteoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL