Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749423

ABSTRACT

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Subject(s)
Aging , Blood Platelets , Cell Differentiation , Hematopoietic Stem Cells , Thrombosis , Animals , Hematopoietic Stem Cells/metabolism , Blood Platelets/metabolism , Thrombosis/pathology , Thrombosis/metabolism , Mice , Humans , Megakaryocytes/metabolism , Mice, Inbred C57BL , Megakaryocyte Progenitor Cells/metabolism , Male
2.
Stem Cells ; 41(5): 520-539, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36945732

ABSTRACT

Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.


Subject(s)
Chromatin , Hematopoiesis , Chromatin/genetics , Chromatin/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics
3.
Infect Immun ; 91(1): e0032222, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36533917

ABSTRACT

Helicobacter pylori colonizes half of the world's population and is responsible for a significant disease burden by causing gastritis, peptic ulcers, and gastric cancer. The development of host inflammation drives these diseases, but there are still open questions in the field about how H. pylori controls this process. We characterized H. pylori inflammation using an 8-month mouse infection time course and comparison of the wild type (WT) and a previously identified mutant lacking the TlpA chemoreceptor that causes elevated inflammation. Our work shows that H. pylori chronic-stage corpus inflammation undergoes surprising fluctuations, with changes in Th17 and eosinophil numbers. The H. pylori tlpA mutant changed the inflammation temporal characteristics, resulting in different inflammation from the wild type at some time points. tlpA mutants have equivalent total and gland colonization in late-stage infections. During early infection, in contrast, they show elevated gland and total colonization compared to those by WT. Our results suggest the chronic inflammation setting is dynamic and may be influenced by colonization properties of early infection.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Animals , Mice , Helicobacter pylori/genetics , Chemotaxis , Bacterial Proteins/genetics , Inflammation , Gastric Mucosa
4.
Heliyon ; 8(11): e11596, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36439758

ABSTRACT

Project-based learning (PBL) has long been recognized as an effective way to teach complex biology concepts. However, not all institutions have the resources to facilitate effective project-based coursework for students. We have developed a framework for facilitating PBL using remote-controlled internet-connected microscopes. Through this approach, one lab facility can host an experiment for many students around the world simultaneously. Experiments on this platform can be run on long timescales and with materials that are typically unavailable to high school classrooms. This allows students to perform novel research projects rather than just repeating standard classroom experiments. To investigate the impact of this program, we designed and ran six user studies with students worldwide. All experiments were hosted in Santa Cruz and San Francisco, California, with observations and decisions made remotely by the students using their personal computers and cellphones. In surveys gathered after the experiments, students reported increased excitement for science and a greater desire to pursue a career in STEM. This framework represents a novel, scalable, and effective PBL approach that has the potential to democratize biology and STEM education around the world.

5.
Am J Hematol ; 97(9): 1226-1235, 2022 09.
Article in English | MEDLINE | ID: mdl-35560111

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last 5 years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic.


Subject(s)
CRISPR-Cas Systems , Hematologic Diseases , Bioengineering , Genomics/methods , Hematologic Diseases/genetics , Hematologic Diseases/therapy , Hematopoietic Stem Cells , Humans
6.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35072209

ABSTRACT

Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment.


Subject(s)
Hematopoietic Stem Cells/immunology , Lymphopoiesis/genetics , Receptors, Interleukin-7/genetics , fms-Like Tyrosine Kinase 3/genetics , Adaptive Immunity/genetics , Animals , B-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Gene Expression Regulation, Developmental/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate/genetics , Lymphocytes/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphopoiesis/immunology , Mice , Organ Specificity/genetics , T-Lymphocytes, Regulatory/immunology
7.
Stem Cell Reports ; 16(6): 1598-1613, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34019813

ABSTRACT

Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.


Subject(s)
Aging/physiology , Hematopoietic Stem Cells/physiology , Megakaryocyte Progenitor Cells/physiology , Thrombopoiesis , Transcriptome , Animals , Cell Lineage , Female , Hematopoietic Stem Cell Transplantation/methods , Male , Mice , Mice, Inbred C57BL
8.
Cell Rep ; 30(3): 642-657.e6, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968243

ABSTRACT

Huntington's disease (HD) is caused by an autosomal dominant polyglutamine expansion mutation of Huntingtin (HTT). HD patients suffer from progressive motor, cognitive, and psychiatric impairments, along with significant degeneration of the striatal projection neurons (SPNs) of the striatum. HD is widely accepted to be caused by a toxic gain-of-function of mutant HTT. However, whether loss of HTT function, because of dominant-negative effects of the mutant protein, plays a role in HD and whether HTT is required for SPN health and function are not known. Here, we delete Htt from specific subpopulations of SPNs using the Cre-Lox system and find that SPNs require HTT for motor regulation, synaptic development, cell health, and survival during aging. Our results suggest that loss of HTT function in SPNs could play a critical role in HD pathogenesis.


Subject(s)
Corpus Striatum/physiology , Huntingtin Protein/metabolism , Nerve Net/physiology , Neurons/cytology , Neurons/physiology , Synapses/physiology , Aging/physiology , Animals , Behavior, Animal/physiology , Cell Survival , Gene Deletion , Globus Pallidus/physiology , Mice, Knockout , Motor Activity/physiology , Signal-To-Noise Ratio
9.
J Neurosci ; 34(28): 9455-72, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25009276

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.


Subject(s)
Cerebral Cortex/physiology , Corpus Striatum/physiology , Excitatory Postsynaptic Potentials/physiology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Synapses/physiology , Synapses/ultrastructure , Animals , Cells, Cultured , Cerebral Cortex/cytology , Corpus Striatum/cytology , Huntingtin Protein , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...