Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
3.
J Immunol ; 202(6): 1895-1903, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30700588

ABSTRACT

Comprehensive knockout of HLA class II (HLA-II) ß-chain genes is complicated by their high polymorphism. In this study, we developed CRISPR/Cas9 genome editing to simultaneously target HLA-DRB, -DQB1, and -DPB1 through a single guide RNA recognizing a conserved region in exon 2. Abrogation of HLA-II surface expression was achieved in five different HLA-typed, human EBV-transformed B lymphoblastoid cell lines (BLCLs). Next-generation sequencing-based detection confirmed specific genomic insertion/deletion mutations with 99.5% penetrance in sorted cells for all three loci. No alterations were observed in HLA-I genes, the HLA-II peptide editor HLA-DMB, or its antagonist HLA-DOB, showing high on-target specificity. Transfection of full-length HLA-DPB1 mRNA into knockout BLCLs fully restored HLA-DP surface expression and recognition by alloreactive human CD4 T cells. The possibility to generate single HLA-II-expressing BLCLs by one-shot genome editing opens unprecedented opportunities for mechanistically dissecting the interaction of individual HLA variants with the immune system.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Gene Editing/methods , Gene Knockout Techniques/methods , HLA-DR beta-Chains , RNA, Guide, Kinetoplastida , Cell Line, Tumor , HLA-DR beta-Chains/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...