Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Regul Toxicol Pharmacol ; 149: 105615, 2024 May.
Article in English | MEDLINE | ID: mdl-38555098

ABSTRACT

RIVM convened a workshop on the use of New Approach Methodologies (NAMs) for the ad hoc human health risk assessment of food and non-food products. Central to the workshop were two case studies of marketed products with a potential health concern: the botanical Tabernanthe iboga which is used to facilitate mental or spiritual insight or to (illegally) treat drug addiction and is associated with cardiotoxicity, and dermal creams containing female sex hormones, intended for use by perimenopausal women to reduce menopause symptoms without medical supervision. The workshop participants recognized that data from NAM approaches added valuable information for the ad hoc risk assessment of these products, although the available approaches were inadequate to derive health-based guidance values. Recommendations were provided on how to further enhance and implement NAM approaches in regulatory risk assessment, specifying both scientific and technical aspects as well as stakeholder engagement aspects.


Subject(s)
Consumer Product Safety , Humans , Risk Assessment
3.
Int J Hyg Environ Health ; 249: 114139, 2023 04.
Article in English | MEDLINE | ID: mdl-36870229

ABSTRACT

One of the aims of the European Human Biomonitoring Initiative, HBM4EU, was to provide examples of and good practices for the effective use of human biomonitoring (HBM) data in human health risk assessment (RA). The need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/poly-fluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.


Subject(s)
Biological Monitoring , Mercury , Humans , Environmental Monitoring/methods , Policy , Risk Assessment
5.
Regul Toxicol Pharmacol ; 136: 105276, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36240957

ABSTRACT

Occupational exposure to hexavalent chromium [Cr(VI)], a known lung carcinogen, remains a relevant concern. When performing exposure assessment for risk assessment, biomonitoring is an important tool, reflecting actual internal exposure of workers. Here, we present total urinary chromium (U-Cr) biomonitoring data from several occupational sectors, spanning 1980-2016 (n > 42,000). Based on these data, we estimated lifelong (40-year) occupational lung cancer risks in the Cr-plating and welding sectors. We used published regression formulas to relate internal (U-Cr) and external Cr(VI) inhalation exposures, allowing risk assessment based on a published lung cancer dose-response. Generally, measured U-Cr levels decreased considerably over the study period. The overall highest U-Cr P95 levels (representing realistic worst-case) were measured in the interval 1980-1989 in casters, maintenance workers and welders (40-45 µg/L). By the interval 2010-2016, the U-Cr P95 had decreased to ≤9.5 µg/L in all studied sectors. Lifelong external Cr(VI) exposure estimation for 1980-2019 was 0.16-0.32 mg/m3 x year for platers and 1.03 mg/m3 x year for welders. Worst-case lifelong lung cancer relative risk (RR) estimates were 1.28-1.56 for platers and 2.80 for welders; attributable risks (AR) were 22-36% for platers and 64% for welders. Uncertainties that may have impacted the risk assessment are discussed.


Subject(s)
Lung Neoplasms , Occupational Exposure , Humans , Finland/epidemiology , Environmental Monitoring , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Chromium/toxicity , Lung , Risk Assessment , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology
6.
Regul Toxicol Pharmacol ; 134: 105235, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35917983

ABSTRACT

The concept of the Maximum Tolerated Dose (MTD) was introduced in the seventies for carcinogenicity testing and was defined as the highest dose inducing clear toxicity, but not mortality by causes other than cancer. As estimation of the MTD in a carcinogenicity study, the highest dose that causes a 10% decrease in body weight compared to control animals over the course of a 90-day study, was formulated as a suitable criterion. This criterion was not seen as indicator of excessive toxicity but as a means to avoid false negative outcomes in a carcinogenicity study, as tumor formation may be reduced when body weight is significantly decreased. The body weight-based MTD criterion, however, turned up in carcinogenicity test guidelines and guidance (e.g., from OECD) as the highest dose that causes a 10% decrease in body weight gain relative to controls. Moreover, the 10% decrease in body weight gain criterion for MTD also ended up in test guidelines and guidances for toxicity endpoints other than carcinogenicity, so outside the context it was intended for. A 10% decrease in body weight gain relative to controls is however not a biologically relevant effect as it corresponds to less than 3% body weight reduction relative to controls in a 90-day study, which is within the normal variation in body weight. It therefore should certainly not be considered as a condition of excessive toxicity. Using the 10% lower weight gain criterion and incorrectly associating it with excessive toxicity has major implications for top dose selection in regulatory safety studies, resulting in tests performed at doses too low to elicit toxicity. This negatively impacts the reliability of studies and their regulatory usability; moreover, it results in a waste of experimental animals, which is ethically highly undesirable. Hence, our plea is to remove this MTD criterion for top dose selection in test guidelines and guidances for toxicity endpoints other than carcinogenicity and to reinstall the original 10% decrease in body weight criterion in test guidelines and guidances for carcinogenicity.


Subject(s)
Neoplasms , Weight Gain , Animals , Body Weight , Carcinogenicity Tests/methods , Maximum Tolerated Dose , Reproducibility of Results
7.
Toxics ; 10(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35202282

ABSTRACT

Safety assessment of UV filters for human health by the Scientific Committee on Consumer Safety (SCCS) is based on the estimation of internal dose following external (skin) application of cosmetic products, and comparison with a toxicological reference value after conversion to internal dose. Data from human biomonitoring (HBM) could be very useful in this regard, because it is based on the measurement of real-life internal exposure of the human population to a chemical. UV filters were included in the priority list of compounds to be addressed under the European Human Biomonitoring Initiative (HBM4EU), and risk assessment of benzophenone-3 (BP-3) was carried out based on HBM data. Using BP-3 as an example, this study investigated the benefits and limitations of the use of external versus internal exposure data to explore the usefulness of HBM to support the risk assessment of cosmetic ingredients. The results show that both approaches did indicate a risk to human health under certain levels of exposure. They also highlight the need for more robust exposure data on BP-3 and other cosmetic ingredients, and a standardized framework for incorporating HBM data in the risk assessment of cosmetic products.

10.
Regul Toxicol Pharmacol ; 114: 104660, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32334039

ABSTRACT

In the EU, one of the key determinants in the regulation and management of substances to ensure adequate protection of human health is the outcome of toxicity studies. These studies should therefore be performed in a way that the data generated are adequate to fulfil all regulatory requirements. However, in recent years, an increasing number of toxicity studies use dose levels that induce only slight, or even no toxicity, while the top dose lies well below the limit dose of 1000 mg/kg bw/d. The results of these studies have limited value for the hazard and subsequent risk assessment and risk management of substances. This paper shows why conducting toxicity studies with too low doses has severe consequences for among others classification and labelling, identification of endocrine disruptors, health impact assessment, and incident management. With this paper we aim to raise awareness on this issue and want to stress the importance of the use of sufficiently high dosing in toxicity studies. Given their central role in toxicity testing, it is therefore key to adapt where necessary the descriptions in OECD test guidelines and guidance documents on requirements for dose level setting, to make sure they are as explicit and unambiguous as possible.


Subject(s)
Endocrine Disruptors/toxicity , Hazardous Substances/toxicity , Risk Management , Toxicity Tests , European Union , Humans
11.
Regul Toxicol Pharmacol ; 114: 104659, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32334038

ABSTRACT

The KMD (kinetically-derived maximum dose) is an increasingly advocated concept that uses toxicokinetic data in the top dose selection for toxicity testing. Application of this concept may have serious regulatory implications though, especially in the European Union. The basic assumption is that the relationship between internal and external dose (IED) shows an inflection point where linearity transits into non-linearity due to saturation of underlying processes; top doses in toxicity tests should not be above the inflection point, provided human exposures are well below this point. A critical analysis of the KMD concept and its underlying assumptions shows, however, that the IED relationship is non-linear over the whole dose range, without any point of inflection. The KMD concept thus aims to estimate a non-existing point, rendering it invalid for use in toxicity testing. Moreover, the concept ignores the key question in toxicology: What kind of toxic effects occur at which doses? These and several other reservations against the KMD concept are discussed and illustrated with three existing applications of the KMD approach. Hence, we recommend to abolish the KMD concept for selecting top doses in toxicity testing. This requires the updating of regulations, guidance documents and OECD test guidelines.


Subject(s)
Hazardous Substances/administration & dosage , Hazardous Substances/toxicity , Toxicity Tests , Dose-Response Relationship, Drug , European Union , Humans , Kinetics , Risk Management
12.
J Expo Sci Environ Epidemiol ; 30(3): 567-584, 2020 05.
Article in English | MEDLINE | ID: mdl-30568187

ABSTRACT

The presence of carcinogenic substances in rubber granulate made from old car tyres raised concerns that the use of this granulate as infill on synthetic turf pitches may cause leukaemia and lymphoma in young football players and goalkeepers. Limitations in a number of prior studies on the topic casted doubts on their conclusion that it was safe to play sports on such pitches. Rubber granulate samples from 100 Dutch synthetic turf pitches were analysed for 45 (all samples) or 79 substances (a subset). A subset of samples was additionally analysed for migration of polycyclic aromatic hydrocarbons (PAHs), phthalates and metals into sweat and the gastrointestinal tract, and for evaporation of volatile substances into air. Exposure scenarios were developed to estimate the exposure of amateur football players via the oral, dermal and inhalation route to the most hazardous substances in rubber granulate. Risks to human health were assessed by comparing toxicological reference values for these substances with the exposure estimates. A number of carcinogenic, mutagenic and reprotoxic substances were present in rubber granulate used on Dutch pitches. No concern was, however, identified for phthalates, benzothiazoles, bisphenol A and the metals cadmium, cobalt and lead, as their exposures were below the levels associated with adverse effects on health. PAHs appeared to be the substances of highest concern, but even they present no appreciable health risk with exposures resulting in additional cancer risks at or below the negligible risk level of one in a million. Our findings for a representative number of Dutch pitches are consistent with those of prior and contemporary studies observing no elevated health risk from playing sports on synthetic turf pitches with recycled rubber granulate. Based on current evidence, there is no reason to advise people against playing sports on such pitches.


Subject(s)
Environmental Exposure/statistics & numerical data , Rubber , Environmental Exposure/analysis , Hazardous Substances/analysis , Health , Humans , Metals , Phthalic Acids , Polycyclic Aromatic Hydrocarbons/analysis , Recycling , Risk Assessment , Sports
13.
Int J Hyg Environ Health ; 222(5): 727-737, 2019 06.
Article in English | MEDLINE | ID: mdl-31176761

ABSTRACT

Human biomonitoring (HBM) is an important tool to survey the internal exposure of humans which represents the real life chemical body burden to chemicals and/or their metabolites. It results from total exposure to chemical substances from different sources and via different routes. These substances may be regulated under different legislative frameworks on chemicals (e.g., environmental, occupational, food safety etc). In occupational health, HBM has long traditions to control the exposures at workplaces. By providing accurate data on internal exposure, HBM data can improve human health risk assessment (RA) for both the general population and workers. Although the past few years have shown good examples on the use of HBM in the RA of chemicals, there is still quite some work to be done to improve its use in a regulatory RA. Under the scope of the European Human Biomonitoring Initiative (project HBM4EU, 2017-2021), the current study reviews the state-of-the-art of HBM use in chemicals RA with a special focus in Europe, and attempts to identify hurdles and challenges faced by regulators. To gather information on the use of HBM, including the availability of guidance on how to use it in RA, the RA schemes applied by different European or international organizations were analysed. Examples of such use were identified for a few selected groups of chemicals of concern for human health. In addition, we present the results of a survey, aimed at collecting information from national regulatory risk assessors on their day-to-day RA practices, the use of HBM data, and the obstacles and challenges related to their use. The results evidenced and explained some of the current obstacles of using HBM data in RA. These included the lack of HBM guidance values or biomonitoring equivalents (BEs), limited toxicokinetic information to support the interpretation of HBM data and, in the occupational health and safety (OSH) field, the lack of legal enforcement. Therefore, to support the integration of HBM in regulatory RA, we recommend, on one hand, the elaboration of a EU level guidance on the use of HBM in RA and, on the other hand, the continuation of research efforts to integrate HBM with new RA approaches using in vitro/in silico data and Adverse Outcome Pathways (AOPs).


Subject(s)
Biological Monitoring , Forecasting , Risk Assessment/trends , Environmental Exposure/analysis , Environmental Pollutants/toxicity , Europe/epidemiology , Humans , Risk Assessment/methods , World Health Organization
14.
Sensors (Basel) ; 17(11)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29165334

ABSTRACT

Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for example Daphnia magna or Dreissena mussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors.


Subject(s)
Luminescence , Bacteria , Environmental Monitoring , Netherlands , Water , Water Pollutants, Chemical
15.
Dermatitis ; 28(6): 360-362, 2017.
Article in English | MEDLINE | ID: mdl-29059091

ABSTRACT

A case of allergic contact dermatitis from neem oil is presented. Neem oil (synonyms: Melia azadirachta seed oil [INCI name], nim oil, margosa oil) is a vegetable (fixed) oil obtained from the seed of the neem tree Azadirachta indica by cold pressing. Contact allergy to neem oil has been described previously in only 3 patients. The allergen(s) is/are unknown.


Subject(s)
Dermatitis, Allergic Contact/etiology , Glycerides/adverse effects , Terpenes/adverse effects , Aged , Humans , Male
17.
Anal Bioanal Chem ; 400(4): 915-29, 2011 May.
Article in English | MEDLINE | ID: mdl-21058029

ABSTRACT

Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.


Subject(s)
Bacteria , Biosensing Techniques/methods , Environmental Monitoring/methods , Luminescence , Water Pollutants, Chemical/toxicity , Water Supply/analysis , Bacteria/metabolism , Online Systems , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...