Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 156: 155934, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762141

ABSTRACT

BACKGROUND AND AIM: Clinically, septic males tend to have higher mortality rates, but it is unclear if this is due to sex differences in cardiac dysfunction, possibly influenced by hormonal variations. Cardiac dysfunction significantly contributes to sepsis-related mortality, primarily influenced by metabolic imbalances. Peroxisome proliferator-activated receptor delta (PPARδ) is a key player in cardiac metabolism and its activation has been demonstrated to favor sepsis outcomes. While estradiol (E2) is abundant and beneficial in females, its impact on PPARδ-mediated metabolism in the heart with regards to sex during sepsis remains unknown. METHODS AND RESULTS: Here, we unveil that while sepsis diminishes PPARδ nuclear translocation and induces metabolic dysregulation, oxidative stress, apoptosis and dysfunction in the heart thereby enhancing mortality, these effects are notably more pronounced in males than females. Mechanistic experiments employing ovariectomized(OVX) mice, E2 administration, and G protein-coupled estrogen receptor 1(GPER-1) knockout (KO) mice revealed that under lipopolysaccharide (LPS)-induced sepsis, E2 acting via GPER-1 enhances cardiac electrical activity and function, promotes PPARδ nuclear translocation, and subsequently ameliorates cardiac metabolism while mitigating oxidative stress and apoptosis in females. Furthermore, PPARδ specific activation using GW501516 in female GPER-1-/- mice reduced oxidative stress, ultimately decreasing NLRP3 expression in the heart. Remarkably, targeted GPER-1 activation using G1 in males mirrors these benefits, improving cardiac electrical activity and function, and ultimately enhancing survival rates during LPS challenge. By employing NLRP3 KO mice, we demonstrated that the targeted GPER-1 activation mitigated injury, enhanced metabolism, and reduced apoptosis in the heart of male mice via the downregulation of NLRP3. CONCLUSION: Our findings collectively illuminate the sex-specific cardiac mechanisms influencing sepsis mortality, offering insights into physiological and pathological dimensions. From a pharmacological standpoint, this study introduces specific GPER-1 activation as a promising therapeutic intervention for males under septic conditions. These discoveries advance our understanding of the sex differences in sepsis-induced cardiac dysfunction and also present a novel avenue for targeted interventions with potential translational impact.


Subject(s)
Estradiol , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR delta , Receptors, Estrogen , Receptors, G-Protein-Coupled , Sepsis , Sex Characteristics , Signal Transduction , Animals , Sepsis/metabolism , Sepsis/complications , Female , Male , Receptors, G-Protein-Coupled/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Receptors, Estrogen/metabolism , PPAR delta/metabolism , Mice, Inbred C57BL , Oxidative Stress , Myocardium/metabolism
2.
Cell Commun Signal ; 22(1): 166, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454449

ABSTRACT

BACKGROUND: Clinical and experimental studies have shown that the myocardial inflammatory response during pathological events varies between males and females. However, the cellular and molecular mechanisms of these sex differences remain elusive. CD73/adenosine axis has been linked to anti-inflammatory responses, but its sex-specific cardioprotective role is unclear. The present study aimed to investigate whether the CD73/adenosine axis elicits sex-dependent cardioprotection during metabolic changes and myocarditis induced by hypobaric hypoxia. METHODS: For 7 days, male and female mice received daily injections of the CD73 inhibitor adenosine 5'- (α, ß-methylene) diphosphate (APCP) 10 mg/kg/day while they were kept under normobaric normoxic and hypobaric hypoxic conditions. We evaluated the effects of hypobaric hypoxia on the CD73/adenosine axis, myocardial hypertrophy, and cardiac electrical activity and function. In addition, metabolic homeostasis and immunoregulation were investigated to clarify the sex-dependent cardioprotection of the CD73/adenosine axis. RESULTS: Hypobaric hypoxia-induced cardiac dysfunction and adverse remodeling were more pronounced in male mice. Also, male mice had hyperactivity of the CD73/adenosine axis, which aggravated myocarditis and metabolic shift compared to female mice. In addition, CD73 inhibition triggered prostatic acid phosphatase ectonucleotidase enzymatic activity to sustain adenosine overproduction in male mice but not in female mice. Moreover, dual inhibition prostatic acid phosphatase and CD73 enzymatic activities in male mice moderated adenosine content, alleviating glycolytic shift and proinflammatory response. CONCLUSION: The CD73/adenosine axis confers a sex-dependent cardioprotection. In addition, extracellular adenosine production in the hearts of male mice is influenced by prostatic acid phosphatase and tissue nonspecific alkaline phosphatase.


Subject(s)
Adenosine , Myocarditis , Female , Male , Mice , Animals , Myocarditis/metabolism , Myocarditis/pathology , Hypoxia/metabolism , Myocardium/metabolism , Heart , 5'-Nucleotidase/metabolism
3.
Cell Mol Life Sci ; 80(9): 246, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37572114

ABSTRACT

Stress-induced cardiovascular diseases characterized by inflammation are among the leading causes of morbidity and mortality in postmenopausal women worldwide. Estradiol (E2) is known to be cardioprotective via the modulation of inflammatory mediators during stress. But the mechanism is unclear. TNFα, a key player in inflammation, is primarily converted to its active form by 'A Disintegrin and Metalloprotease 17' (ADAM17). We investigated if E2 can regulate ADAM17 during stress. Experiments were performed using female FVB wild-type (WT), C57BL/6 WT, and G protein-coupled estrogen receptor 1 knockout (GPER-1 KO) mice and H9c2 cells. The study revealed a significant increase in cardiac injury and inflammation during isoproterenol (ISO)-induced stress in ovariectomized (OVX) mice. Additionally, ADAM17's membrane content (mADAM17) was remarkably increased in OVX and GPER-1 KO mice during stress. However, in vivo supplementation of E2 significantly reduced cardiac injury, mADAM17, and inflammation. Also, administering G1 (GPER-1 agonist) in mice under stress reduced mADAM17. Further experiments demonstrated that E2, via GPER-1/PI3K pathway, localized ADAM17 at the perinuclear region by normalizing ß1AR-Gαs, mediating the switch from ß2AR-Gαi to Gαs, and reducing phosphorylated kinases, including p38 MAPKs and ERKs. Thus, using G15 and LY294002 to inhibit GPER-1 and its down signaling molecule, PI3K, respectively, in the presence of E2 during stress resulted in the disappearance of E2's modulatory effect on mADAM17. In vitro knockdown of ADAM17 during stress significantly reduced cardiac injury and inflammation, confirming its significant inflammatory role. These interesting findings provide novel evidence that E2 and G1 are potential therapeutic agents for ADAM17-induced inflammatory diseases associated with postmenopausal females.


Subject(s)
Estradiol , Phosphatidylinositol 3-Kinases , Female , Mice , Animals , Estradiol/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Inflammation
4.
Front Immunol ; 14: 1124649, 2023.
Article in English | MEDLINE | ID: mdl-36875113

ABSTRACT

Background: Sea-level residents experience altitude sickness when they hike or visit altitudes above ~2,500 m due to the hypobaric hypoxia (HH) conditions at such places. HH has been shown to drive cardiac inflammation in both ventricles by inducing maladaptive metabolic reprogramming of macrophages, which evokes aggravated proinflammatory responses, promoting myocarditis, fibrotic remodeling, arrhythmias, heart failure, and sudden deaths. The use of salidroside or altitude preconditioning (AP) before visiting high altitudes has been extensively shown to exert cardioprotective effects. Even so, both therapeutic interventions have geographical limitations and/or are inaccessible/unavailable to the majority of the population as drawbacks. Meanwhile, occlusion preconditioning (OP) has been extensively demonstrated to prevent hypoxia-induced cardiomyocyte damage by triggering endogenous cardioprotective cascades to mitigate myocardial damage. Herein, with the notion that OP can be conveniently applied anywhere, we sought to explore it as an alternative therapeutic intervention for preventing HH-induced myocarditis, remodeling, and arrhythmias. Methods: OP intervention (6 cycles of 5 min occlusion with 200 mmHg for 5 min and 5 min reperfusion at 0 mmHg - applying to alternate hindlimb daily for 7 consecutive days) was performed, and its impact on cardiac electric activity, immunoregulation, myocardial remodeling, metabolic homeostasis, oxidative stress responses, and behavioral outcomes were assessed before and after exposure to HH in mice. In humans, before and after the application of OP intervention (6 cycles of 5 min occlusion with 130% of systolic pressure and 5 min reperfusion at 0 mmHg - applying to alternate upper limb daily for 6 consecutive days), all subjects were assessed by cardiopulmonary exercise testing (CPET). Results: Comparing the outcomes of OP to AP intervention, we observed that similar to the latter, OP preserved cardiac electric activity, mitigated maladaptive myocardial remodeling, induced adaptive immunomodulation and metabolic homeostasis in the heart, enhanced antioxidant defenses, and conferred resistance against HH-induce anxiety-related behavior. Additionally, OP enhanced respiratory and oxygen-carrying capacity, metabolic homeostasis, and endurance in humans. Conclusions: Overall, these findings demonstrate that OP is a potent alternative therapeutic intervention for preventing hypoxia-induced myocarditis, cardiac remodeling, arrhythmias, and cardiometabolic disorders and could potentially ameliorate the progression of other inflammatory, metabolic, and oxidative stress-related diseases.


Subject(s)
Antioxidants , Myocarditis , Humans , Animals , Mice , Homeostasis , Arrhythmias, Cardiac , Hypoxia
5.
Cell Commun Signal ; 21(1): 41, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823590

ABSTRACT

BACKGROUND: During myocardial damage, the sex hormone estrogen and CD73, the main enzyme that converts AMP into adenosine, are cardioprotective molecules. However, it is unclear how these two molecules work together to provide cardioprotection. The current study aimed to elucidate the interaction between estrogen and CD73 under chronic stress. METHODS: Ovariectomy and SHAM operations were done on FVB wild-type (WT) female mice. Two weeks after the operation, the mice were treated with daily isoproterenol (10 mg/kg/day) injections for 14 days. The effect of E2 on relevant cardiac injury biomarkers (BNP, ANP), myocardial morphology (cardiomyocyte surface area), electrocardiography, CD73 protein expression and activity, and macrophage (CD86 + and CD206 +) infiltrations were assessed. In vitro, H9C2 cells were treated with 1 nM of estrogen and 10 mM APCP (CD73 inhibitor α, ß-methylene adenosine-5'-diphosphate), 10 µM isoproterenol and 20 µm LY294002 (PI3K inhibitor) for 24 h and western blot was done to elucidate the mechanism behind the effect of estrogen on the CD73/adenosine axis. RESULTS: Estrogen deficiency during chronic catecholamine stress caused myocardial injury, thereby triggering the hyperactivity of the CD73/adenosine axis, which aggravated myocarditis, adverse remodeling, and arrhythmias. However, estrogen normalizes CD73/Adenosine axis via the upregulation of PI3K/Akt pathways to prevent adverse outcomes during stress. In vivo results showed that the inhibition of PI3K significantly decreased PI3K/Akt pathways while upregulating the CD73/adenosine axis and apoptosis. CONCLUSION: Estrogen's pleiotropy cardioprotection mechanism during stress includes its normalization of the CD73/Adenosine axis via the PI3K/Akt pathway. Video Abstract.


Subject(s)
Adenosine , Myocarditis , Female , Mice , Animals , Adenosine/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Catecholamines , Isoproterenol/pharmacology , Arrhythmias, Cardiac , Estrogens/pharmacology , Apoptosis
6.
Clin Exp Pharmacol Physiol ; 49(5): 558-566, 2022 05.
Article in English | MEDLINE | ID: mdl-35133684

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by cardiac remodelling. Glutaminolysis plays a crucial role in PAH-induced remodelling. The metabotropic glutamate receptor 5 (mGluR5) may mediate this process. This study investigated whether or not the blockade of mGluR5 may attenuate PAH-induced pathological cardiac remodelling. Pulmonary arterial hypertension was induced by intraperitoneally injecting male Sprague-Dawley (SD) rats with 60 mg/kg of monocrotaline (MCT). 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) (10 mg/kg intraperitoneally) was used as a therapeutic intervention to block mGluR5. Cardiac functions were assessed with right heart catheterization and electrocardiography. Alterations in protein expressions and inflammatory markers were investigated using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Increased right ventricular systolic pressure (RSVP), elevated protein expressions of mGluR5, collagen types I and III and cartilage intermediate layer protein 1 (CILP1), enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K), AKT and p38 mitogen-activated protein kinase (P38MAPK), increased angiopoietin 2 (Ang 2) and vascular endothelial growth factor-α (VEGF) protein expressions and elevated serum levels of interleukin 6 (IL-6) and tumour necrotic factor α (TNF-α) were observed in MCT-induced PAH rats. MTEP improved hemodynamics and right ventricular hypertrophy. MTEP also attenuated MCT-induced elevations in the protein expressions of mGluR5, collagen types I and III, CILP1, Ang 2 and VEGF and decreased PI3K, AKT and P38MAPK phosphorylations and inflammatory cytokine levels. Metabotropic glutamate receptor 5 blockade using MTEP ameliorates PAH-induced pathological right cardiac remodelling via inhibiting the signalling cascade involving PI3K/AKT, P38MAPK, Ang 2 and VEGF.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Male , Monocrotaline , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Receptor, Metabotropic Glutamate 5/metabolism , Vascular Endothelial Growth Factor A , Ventricular Remodeling
7.
Front Cardiovasc Med ; 8: 667446, 2021.
Article in English | MEDLINE | ID: mdl-33996951

ABSTRACT

Pulmonary arterial hypertension (PAH) is a decimating ailment described by chronic precapillary pulmonary hypertension, an elevated mean pulmonary arterial pressure with a normal pulmonary capillary wedge pressure, and a raised pulmonary vascular resistance resulting in increased right ventricular afterload culminating in heart failure and death. Current PAH treatments regulate the vasodilatory/vasoconstrictory balance of pulmonary vessels. However, these treatment options are unable to stop the progression of, or reverse, an already established disease. Recent studies have advanced a metabolic dysregulation, featuring increased glutamine metabolism, as a mechanism driving PAH progression. Metabolic dysregulation in PAH leads to increased glutaminolysis to produce substrate to meet the high-energy requirement by hyperproliferative and apoptosis-resistant pulmonary vascular cells. This article explores the role of glutamate metabolism in PAH and how it could be targeted as an anti-remodeling therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...