Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(12): 2702-2711.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776901

ABSTRACT

Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.


Subject(s)
Evolution, Molecular , Flowers , Odorants , Self-Fertilization , Flowers/genetics , Self-Fertilization/genetics , Odorants/analysis , Pollination , Alkenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Acyclic Monoterpenes
2.
Front Immunol ; 15: 1330549, 2024.
Article in English | MEDLINE | ID: mdl-38433831

ABSTRACT

Background: Vaccination against COVID-19 is highly effective in preventing severe disease and hospitalization, but primary COVID mRNA vaccination schedules often differed from those recommended by the manufacturers due to supply chain issues. We investigated the impact of delaying the second dose on antibody responses to COVID mRNA-vaccines in a prospective cohort of health-care workers in Quebec. Methods: We recruited participants from the McGill University Health Centre who provided serum or participant-collected dried blood samples (DBS) at 28-days, 3 months, and 6 months post-second dose and at 28-days after a third dose. IgG antibodies to SARS-CoV2 spike (S), the receptor-binding domain (RBD), nucleocapsid (N) and neutralizing antibodies to the ancestral strain were assessed by enzyme-linked immunosorbent assay (ELISA). We examined associations between long (≤89 days) versus short (<89 days) between-dose intervals and antibody response through multivariable mixed-effects models adjusted for age, sex, prior covid infection status, time since vaccine dose, and assay batch. Findings: The cohort included 328 participants who received up to three vaccine doses (>80% Pfizer-BioNTech). Weighted averages of the serum (n=744) and DBS (n=216) cohort results from the multivariable models showed that IgG anti-S was 31% higher (95% CI: 12% to 53%) and IgG anti-RBD was 37% higher (95% CI: 14% to 65%) in the long vs. short interval participants, across all time points. Interpretation: Our study indicates that extending the covid primary series between-dose interval beyond 89 days (approximately 3 months) provides stronger antibody responses than intervals less than 89 days. Our demonstration of a more robust antibody response with a longer between dose interval is reassuring as logistical and supply challenges are navigated in low-resource settings.


Subject(s)
Antibody Formation , COVID-19 , Humans , Prospective Studies , COVID-19 Vaccines , RNA, Viral , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Immunoglobulin G , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL