Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 409: 110204, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925370

ABSTRACT

BACKGROUND: Microfluidics offers precise drug delivery and continuous monitoring of cell functions, which is crucial for studying the effects of toxins and drugs. Ensuring proper cell growth in these space-constrained systems is essential for obtaining consistent results comparable to standard Petri dishes. NEW METHOD: We investigated the proliferation of SH-SY5Y cells on circular polycarbonate chambers with varying surface areas. SH-SY5Y cells were chosen for their relevance in neurodegenerative disease research. RESULTS: Our study demonstrates a correlation between the chamber surface area and SH-SY5Y cell growth rates. Cells cultured in chambers larger than 10 mm in diameter exhibited growth comparable to standard 60-mm dishes. In contrast, smaller chambers significantly impeded growth, even at identical seeding densities. Similar patterns were observed for HeLaGFP cells, while 16HBE14σ cells proliferated efficiently regardless of chamber size. Additionally, SH-SY5Y cells were studied in a 12-mm diameter sealed chamber to assess growth under restricted gas exchange conditions. COMPARISON WITH EXISTING METHODS: Our findings underscore the limitations of small chamber sizes in microfluidic systems for SH-SY5Y cells, an issue not typically addressed by conventional methods. CONCLUSIONS: SH-SY5Y cell growth is highly sensitive to spatial constraints, with markedly reduced proliferation in chambers smaller than 10 mm. This highlights the need to carefully consider chamber size in microfluidic experiments to achieve cell growth rates comparable to standard culture dishes. The study also shows that while SH-SY5Y and HeLaGFP cells are affected by chamber size, 16HBE14σ cells are not. These insights are vital for designing effective microfluidic systems for bioengineering research.


Subject(s)
Cell Culture Techniques , Microfluidics , Cell Line, Tumor , Microfluidics/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Proliferation , Oxygen Consumption/physiology , Mitochondria/metabolism
2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685840

ABSTRACT

Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they're not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.


Subject(s)
Mitochondrial Dynamics , Neurodegenerative Diseases , Humans , Mitochondrial Dynamics/genetics , Neurodegenerative Diseases/genetics , Adenosine Triphosphate , Membrane Potentials , Mitochondria/genetics
3.
Phytother Res ; 34(7): 1670-1677, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32083789

ABSTRACT

The number of patients using cannabis for therapeutic purposes is growing worldwide. While research regarding the treatment of certain diseases/disorders with cannabis and cannabinoids is also expanding, only a few longitudinal studies have assessed the mid-term impacts of medical cannabis use on psychological variables and quality of life (QoL). The aim of the study was to assess the psychological safety and QoL of patients with chronic diseases who self-medicate with cannabis over time. We recruited patients with various chronic diseases who use cannabis and collected data regarding patterns of cannabis use as well as mental health, personality and QoL. Participants were followed-up at baseline, 4, 8 and 12 months. Hair analysis was conducted to confirm the presence of cannabinoids. Personality assessment showed a consistent decrease in self-transcendence and self-directedness scores. Neither cognitive nor psychopathological deterioration was found. There were also no variations in QoL. Mid-term use of medical cannabis seems to show adequate tolerability regarding cognitive and psychopathological abilities, and it may help patients with chronic diseases to maintain an acceptable QoL.


Subject(s)
Cannabis/adverse effects , Mental Health/standards , Personality/physiology , Quality of Life/psychology , Substance-Related Disorders/psychology , Adolescent , Adult , Aged , Chronic Disease , Female , Humans , Longitudinal Studies , Male , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL